LC-MS/MS QUANTITATION IN DRUG DISCOVERY & DEVELOPMENT

Ludmila Alexandrova

2 September 2010
For personal use only.

Please do not reuse or reproduce without the author’s permission.
Presentation Outline

• Bioanalysis and Metabolites in Drug Discovery and Development

• Case Study
 – Quantification of Phthalates in Urine

• Conclusion
What is Bioanalysis?

• Bioanalysis employed for the quantitative determination of drugs and their metabolites in biological fluids, plays a significant role in the evaluation and interpretation of bioequivalence, pharmacokinetic and toxicokinetic studies (Viswanathan c.t. et al. Workshop/conference Report, AAPS Journal 2007; 9 (1) Article 4)
Metabolites and Bioanalysis In Drug Development

• Identify and profile animal metabolites

In vitro

In vivo (cold/C¹⁴)

• Identify and profile human metabolites

In vitro

In vivo (cold/C¹⁴)

• Bioanalytical methods

P
Non-GLP method

M
GLP method

GLP: Good Laboratory Practice P: Parent M: Metabolite(s)

The cost to bring a drug to the market is about $1.3 billion (US FDA, 2004)
MS Instrumentation of Choice

• Bioanalysis
 – Triple Quadrupoles
 • Most of the Quantitative Assays are Performed in Multiple Reaction Monitoring (MRM) Mode

• Metabolite Identification
 – Ion Traps
 – Q-Tofs
 – Triple Quadrupoles
Bioanalysis in Drug Discovery Phase

Scope

Determine Concentrations/Exposures in Pharmacokinetic (PK), Pharmacodynamic (PD) Studies

Requirements and Challenges

– Significant Throughput for the Screening Across Different Chemical Series
– Generic Assays are Preferred/Automated Method Development
– No Stable Isotope Internal Standard
– Unknown Compound/Metabolite Stability
– No QC Samples to Verify Method Performance
Bioanalysis in Preclinical Phase

Scope

• Determine Concentrations/Exposures in Toxicokinetic Studies Using Validated Assays to Evaluate Drug Safety

• Requirements and Challenges
 – Full Validation Required
 – Stability in Matrix Investigated
 – Highly Regulated: Conducted According to Good Laboratory Practice (GLP) and Most Activities Should Follow Standard Operation Procedures (SOP)
 – More Work for Troubleshooting and Validation to Produce Rugged and Robust assay
 – Time Constraint: Validation Completed Before the Actual Study Starts
 – Long-Term Use for Routine Analysis
 – The Bioanalytical Assay Becomes a Part of Regulatory Submission (e.g. IND)
Bioanalysis in Clinical Phase

Scope

• Determine Concentrations/Exposures in Clinical /Bioequivalence Studies (Phase 1 - Phase 3)

• Requirements and Challenges
 – Assay Adjusted for Human Matrices (Plasma, Serum, Urine)
 – Ultra-Sensitive Assay May be Required
 • Novel Target is Pursued
 • Microdosing
 – Long-Term Usage is Desirable: Preferable to Use the Same Assay Through Phase 1 – Phase 3 clinical studies
 – Assay Flexibility with Regards to Concomitant Medications or Background Interferences
 – Fast Turn Around for First in Man Studies
Analytical Approaches for Bioanalysis

• **LC/Ultraviolet (UV)/Fluorescence**
 – Due to Low (if any) Specificity of Detectors Not Much in Use for Over a Decade

• **LC/MS**
 – Most of the Assays are Performed Using Triple Quadrupole Instruments Operating in Selected Reaction Monitoring (SRM) Mode

• **Ionization Techniques**
 – APCI
 • More appropriate for Poorly Ionized Analytes
 • Less Matrix Effect
 – ESI
 • With Biological Matrices ESI is Prone to Ionization Suppression/Enhancement
 • Sample Purification is Required
Liquid Chromatography in Bioanalysis

- Role of Chromatography for Bioanalysis Changed

- Baseline Separation is Not Required Due to High Selectivity of MRM
 - LC Remains an Important Method for
 - Concentration of Analytes During Injection or
 - Minimize Matrix Suppression

- Only in Selected Cases Separation of Analytes is Required
 - Low Level of Detection
 - Phase II Metabolites
Phase II Metabolites Interference
Phase II Metabolites Interference

Parent
XIC of +Q1: 376.0 to 376.5 amu from Sample 2

XIC of +Q1: 456 to 456.5 amu from Sample 2

N-Sulfate
XIC of +Q1: 418.0 to 418.5 amu from Sample 2

N-Acetyl

Intensity, cps

Time, min

Max. 5.7e7 cps.

4.79

4.56

50 6
Sample Preparation Techniques in Bioanalysis

• **Goal**
 – Increase Sensitivity and Selectivity
 – Minimize Ion Suppression
 – Concentrate Sample

• **Most Popular Techniques**
 – Protein Precipitation (PPT)
 – Liquid-Liquid Extraction (LLE)
 – Solid Phase Extraction (SPE)
 • On line
 • Off line
Case Study

Scope

• Develop Bioanalytical Method for Quantification of Urinary Phthalate Metabolites

Assay Requirements

– Urine
– Two Analytes
 • Total Monoethyl Phthalate (MEP) (Free and Glucuronidated)
 • Total Monobutyl Phthalate (MBP) (Free and Glucuronidated)
– Stable Isotope Labeled Internal Standards
– MEP and MBP Glucuronides are not available
– Lower Limit of Quantification LLOQ=5 ng/mL
– LC-MS/MS
Background

- People are routinely exposed to phthalates because of their wide use as industrial solvents and plasticizers.
- Diethyl and dibutyl phthalates are widely used in perfumes, cologne, soap, shampoo, nail polish and cosmetics.
- Some phthalates and their metabolites are responsible for reproductive and developmental toxicities in animals.
- Phthalate monoesters and their respective metabolites used as urinary or serum biomarkers of phthalate exposure.
Phthalate Metabolism

- In Humans, Phthalate diesters are metabolized to their respective monoesters which are partially glucuronidated.

- Excreted through Urine and Feces.

Phthalate Diester

- MEP: R=Ethyl
- MBP: R=Butyl

Monoester Glucuronide

β-Glucuronidase

Monoester
Challenges of the method

- Develop Hydrolysis procedure to determine total monoester amount
 - Free monoester+conjugated monoester
- Possible Matrix effect
- Needs to be pre-concentrated and purified before injection
 - Off line SPE
 - On-line SPE

On-line SPE Procedure Implemented

Silica based monolithic column for sample pre-concentration/purification

Column: Chromolith Flash RP-18e column (4.5x25mm, Merck KGaA, Germany)

Back-flush to Analytical column – MS

Column: Eclipse Plus, Phenyl Hexyl 2.1x150mm, 5um (Agilent)

Mobile Phase:

A (0.1% Acetic Acid in water);
B (0.1% Acetic Acid in Acetonitrile)

LC-MS Conditions

- Mass spectrometer: Triple Quadrupole (Micromass Quattro)
- Ionization: ESI-
- Mode: MRM

- Injection Volume
 - 50uL

<table>
<thead>
<tr>
<th>Compound</th>
<th>Transition monitored</th>
<th>Cone/Collision Energy</th>
<th>Retention Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEP</td>
<td>192.7→76.9</td>
<td>22/22</td>
<td>~3.43</td>
</tr>
<tr>
<td>MBP</td>
<td>220.9→76.9</td>
<td>22/18</td>
<td>~4.22</td>
</tr>
<tr>
<td>IS MEP</td>
<td>197.0→78.9</td>
<td>22/19</td>
<td>~3.43</td>
</tr>
<tr>
<td>IS MBP</td>
<td>224.7→78.9</td>
<td>25/20</td>
<td>~4.22</td>
</tr>
</tbody>
</table>
Selected Reaction Monitoring (MRM)

Transition: m/z 193 \rightarrow m/z 77
ON-LINE SPE METHOD

• On-line SPE for pre-concentration and purification
 – Column: Chromolith Flash RP-18e column (4.5x25mm, Merck KGaA, Germany)
 – Mobile Phase:
 • A (0.1% Acetic Acid in water);
 • B (0.1% Acetic Acid in Acetonitrile)
SWITCHING VALVE POSITION 1

Inject (50 - 100uL)

Load on Trap Column while Analytical column is Equilibrating

1 Minute in Position 1
HPLC ANALYTICAL METHOD

- Column
 - Eclipse Plus, Phenyl Hexyl 2.1x150mm, 5um (Agilent)
- Mobile Phase:
 - A (0.1% Acetic Acid in water);
 - B (0.1% Acetic Acid in Acetonitrile)
Switching Valve
POSITION 2

Back Flush from Trap Column onto Analytical Column to Mass spectrometer

7 minutes in Position 2
5ng/mL Calibration Solution

5 ng/ml
PakV_100804_24708_14 Sm (Mn, 2x3)

MRM of 7 Channels ES-224.7 > 78.98 (13C4-MBP)
6.04e4 Area

220 92 76 9 (MBP)
41 8

MRM of 7 Channels ES-197.01 > 78.85 (13C4-MEP)
3.75e4 Area

192.7 > 76.97 (MEP)
1.46e3 Area
MEP/MBP Calibration Curves

- 5ng/mL - 1000ng/mL
- Injection volume: 50uL
- Some Amounts of MEP were Detected in Blank Urine (~30 – 100 ng/mL)
- Some Amounts of MBP were Detected in Blank Urine (~5 – 40 ng/mL)
Case Study: Summary

- On-line SPE Method Implemented
- 122 Urine Samples Analyzed in 3 Runs
- Wide Range of Concentrations Detected Confirming Human Exposure to Phthalates
 - MEP Concentration range: 5 – 2600 ng/mL
 - MBP Concentration range: <5 – 200 ng/mL
- This Method Could be Used for Other Studies which Require Sample Pre-concentration and Purification
Conclusions

• Bioanalysis is an Integral Part of PK/TK/PD Characterization of New Compounds from Discovery Through Various Stages of Drug Development Leading to the Market

• LC-MS Triple Quadrupoles are Instruments of Choice for Quantification

• Method Development is Challenging and Exciting Part of the Drug Development Process Since Unique Compounds are Used and New Targets Investigated

• The Choice of Instrumentation and its Characteristics is Important, but it is Essential to Understand Chemical Properties of the Compounds to be Successful!
Acknowledgments

SUMS Group
Allis Chien
Karolina Krasinska
Pavel Aronov
Chris Adams
Maurizio Splendore

Vincent & Stella Coates Foundation