

Rapid Assay Development and Refinement for Targeted Protein Quantitation Using an Intelligent SRM (iSRM) Workflow

September 2, 2010 Reiko Kiyonami, Ph. D. Senior Strategic Marketing Specialist – Proteomics Thermo Fisher Scientific **Discovery** Fishing for differentially expressed proteins

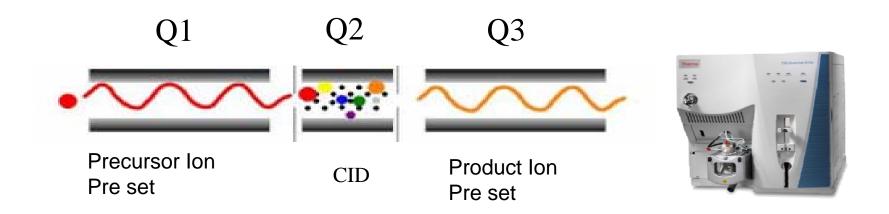
Targeted

Measuring proteins in known pathways

Why Targeted Quantitative Proteomics?

Control Knockdown SP Acp62F UAS-IR(SP)/TM3, Sb UAS-IR(SP)/tubulin-GAL4 Control Knockdown 5e+5 5e+1 FPIPSPNPRDK (from SP) **FPIPSPNPRDK** 520.7 > 927.5 520.8 > 927.5 (from SP) 520.7 > 813.4 4e+5 520.8 > 813.4 4e+5 520.7 > 700.3 520.8 > 700.3 520.7 > 643.3 520.8 > 643.3 520.8 > 546.3 520.7 > 546.3 3e+5 520.8 > 475.2 3e+5 520.7 > 485.2 Intensity Intensity - 520.8 > 289.1 520.7 > 289.1 2e+5 2e+5 1e+5 1e+5 Time Time 690 9 > 1252 6 690.9 > 1252.6 690.9 > 1123.6 690.9 > 1123.6 690 9 > 1008 6 KEDMLLGVSNF **KEDMLLGVSNFK** 690.9 > 1008.6 6e+4 6e+4 690 9 > 877 6 690.9 > 877.5 (from Acp62F) 690.9 > 764.4 (from Acp62F) 690.9 > 764.4 690.9 > 584.3 690.9 > 584.3 Intensity Intensity 690 9 > 495 2 690.9 > 495.2 4e+4 4e+4 2e+4 2e+4 Time Time

Data provided by M. J. MacCoss from Uni. of Washington


➢ Need to verify potential biomarkers which have been found in the discovery experiments to narrow down the long biomarker candidate list to a few of real promising ones for validation stage.

Need to acquire consistent quantitative data for large protein sets to facilitate modeling in systems biology studies.

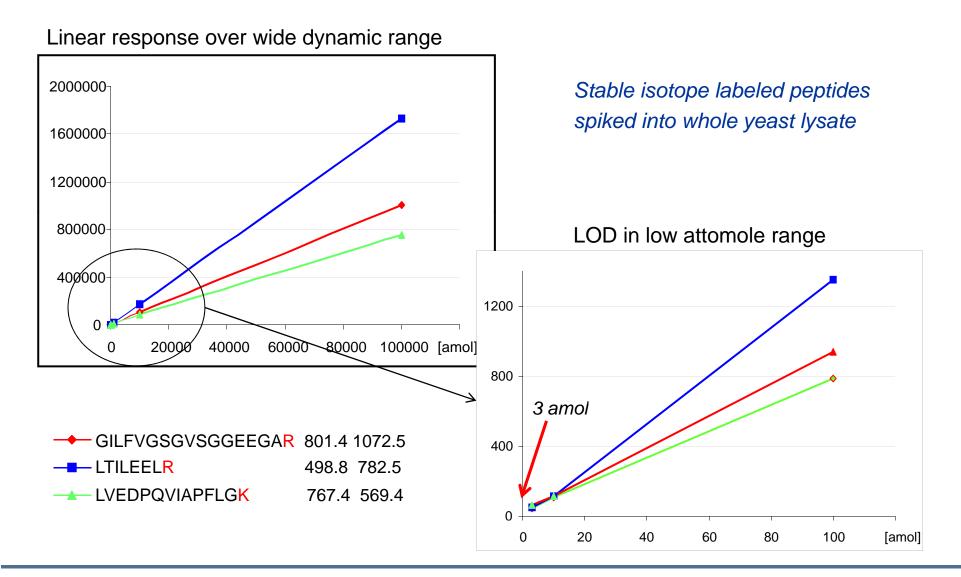
The traditional immunoassay method is too expensive to implement on such a large scale.

Alternatively, a multiple SRM assay on a triple quadrupole mass spectrometer can be used for targeting hundreds of biomarker candidates from hundreds of complex samples in a high throughput way.

SRM (Selected Reaction Monitoring) assay

- 1. A "proteotypic" peptide is selected as being quantitative surrogate of a targeted protein.
- 2. Q1 is set to transmit only the precursor ion of the selected peptide.
- **3**. Q2 is used to induce fragmentation of the precursor ion.
- 4. Q3 is set to transmit a specific product ion,

Each precursor to product ion set is called an SRM transition.



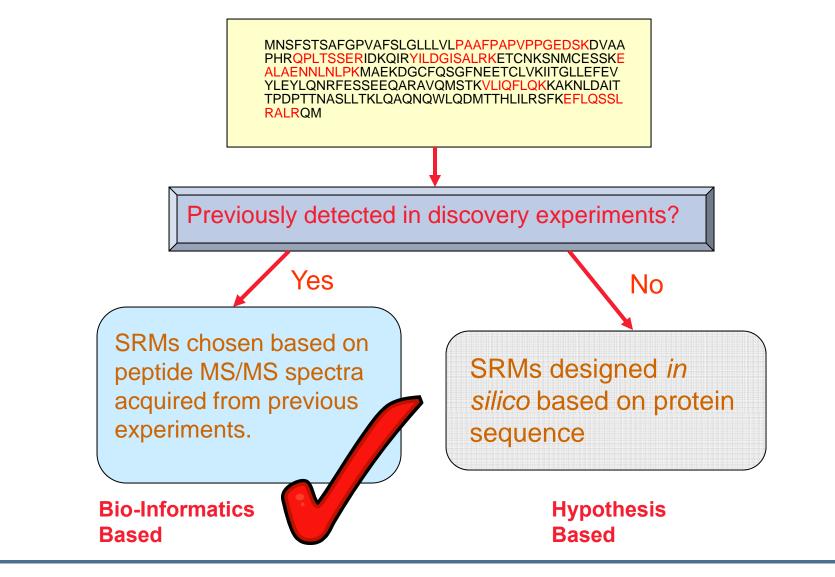
> Highest specificity/sensitivity – necessary for low abundant peptides in complex matrices like plasma

Largest linear dynamic range for quantitation

Well-established as the quantitative method of choice for small molecule applications

TSQ Vantage allows Low Level Quantitation in Background Matrix

SCIENTIFIC


Peptide Selection and SRM Assay Design

The success and confidence of an SRM experiment directly depends on the selected proteotypic peptides and the specific transitions.

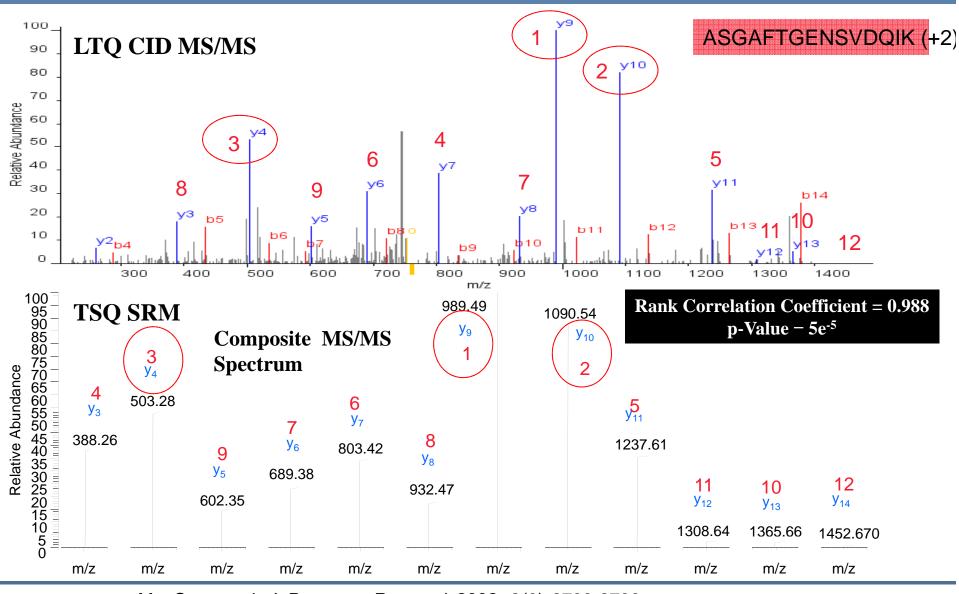
- Peptides have to be unique to the targeted protein
- Peptides should not contain Cys, Met or other commonly modified residues
- Peptides should yield excellent mass spectral signal
- Selected product ions used for SRM analysis should have higher mass over charge values for increased selectivity

From Protein...to SRM

- How can you select your peptides/transitions?

Can we use CID MS/MS data for selecting SRM transitions?

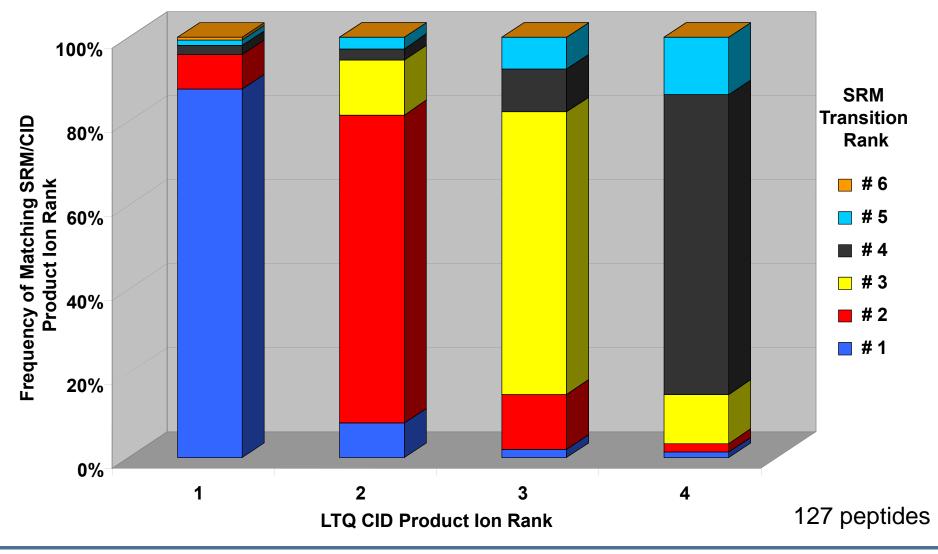
Correlation between y-Type lons Observed in Ion Trap and Triple Quadrupole Mass Spectrometers


Carly A. Sherwood,[†] Ashley Eastham,[‡] Lik Wee Lee,[†] Jenni Risler,[§] Olga Vitek,["] and Daniel B. Martin^{*,†}

Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103, Amgen, 1201 Amgen Court West, Seattle, Washington 98119, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, Washington 98112, and Purdue University, 250 North University Street, West Lafayette, Indiana 47907

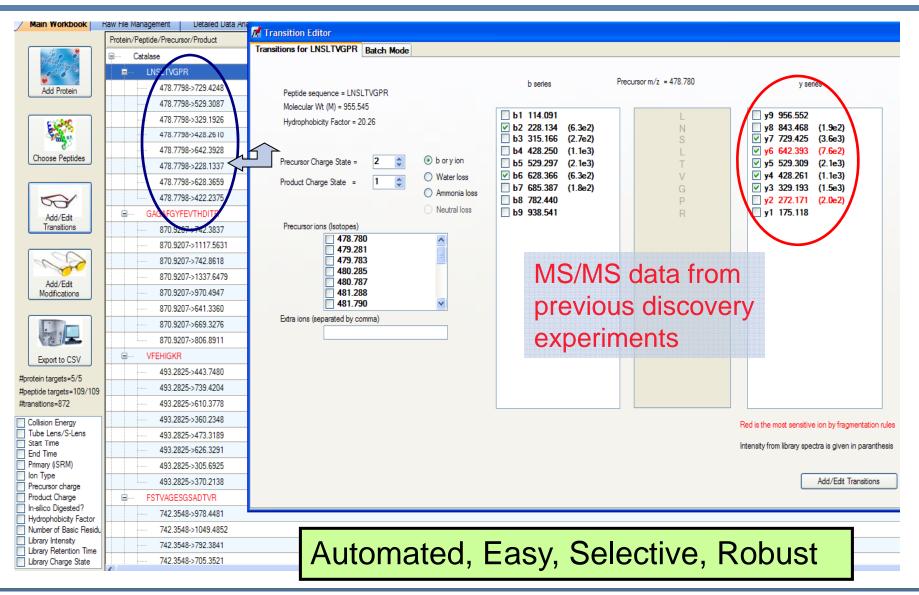
Received March 31, 2009

Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.

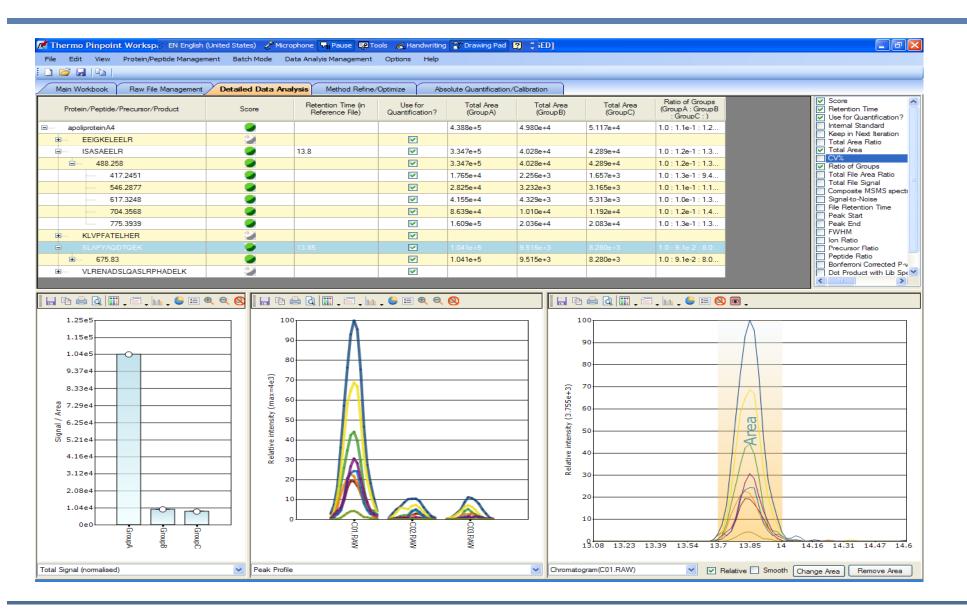

Comparing Product Ion Rankings – Linear Ion Trap CID vs. Triple Quadrupole SRM Transitions

MacCoss et al. J. Proteome Research 2008, 8(6), 2733-2739

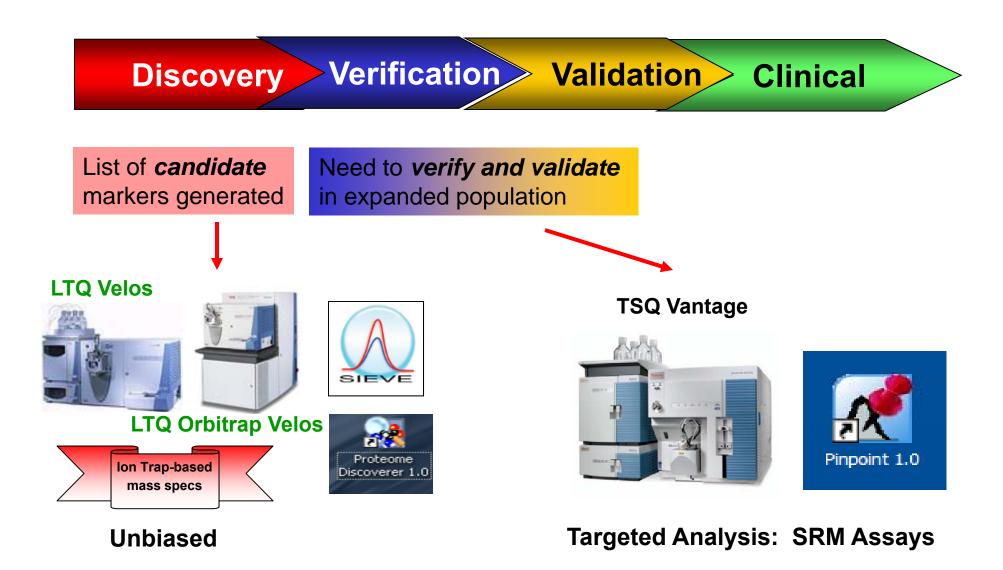
Thermo Fisher


Evaluation of Rank Overlap: LTQ CID to SRM

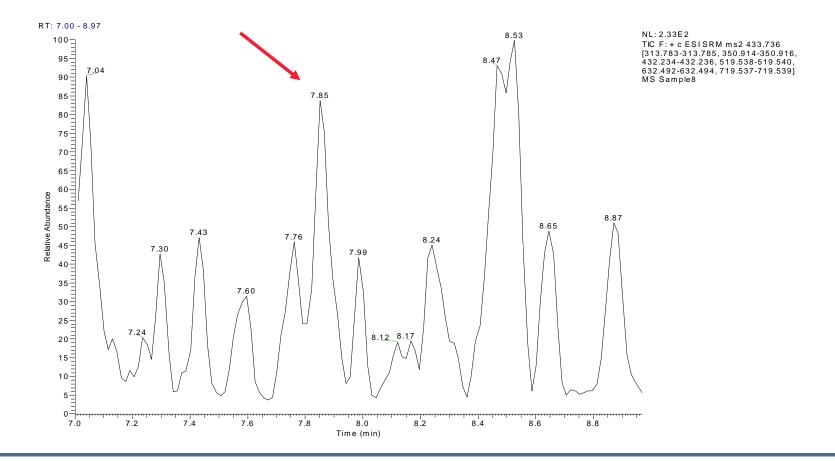
MacCoss et al. J. Proteome Research 2008, 8(6), 2733-2739


Thermo Fisher

Automatic Peptide and Transition Selection based on MS/MS spectral library by using Pinpoint

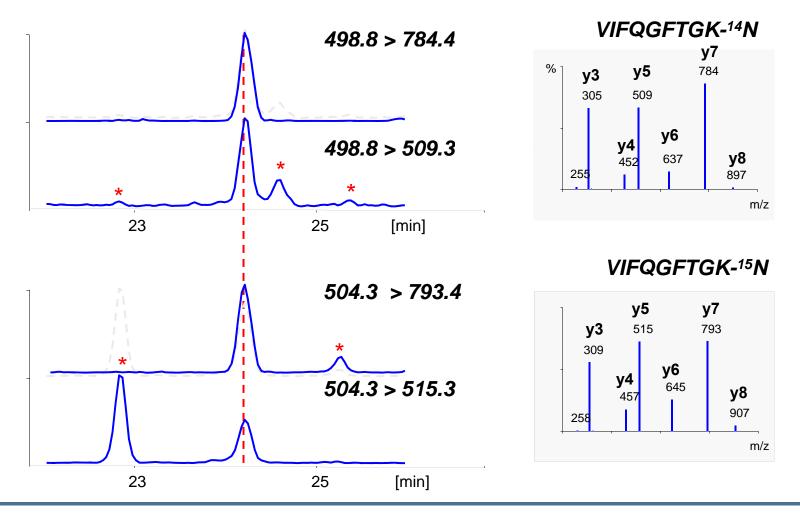


Automated Data Processing and Peptide Verification using Pinpoint

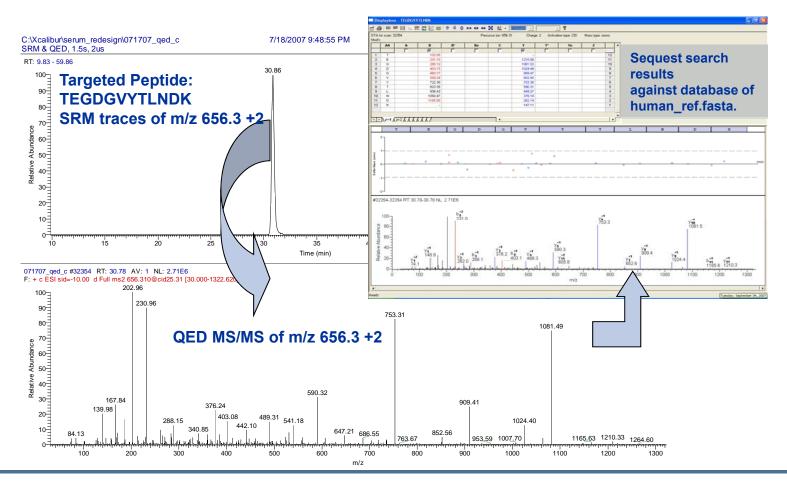

Biomarker Workflow

Challenge for Peptide Quantitation using SRM How to verify if the detected peak is the right targeted peptide

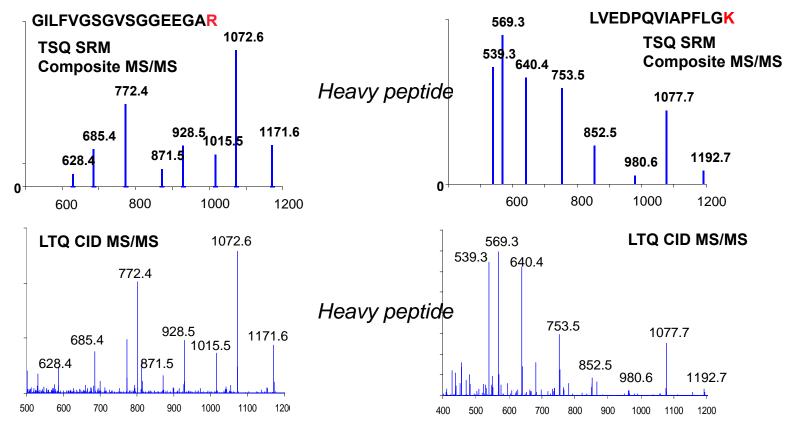
Which peak is my peptide?

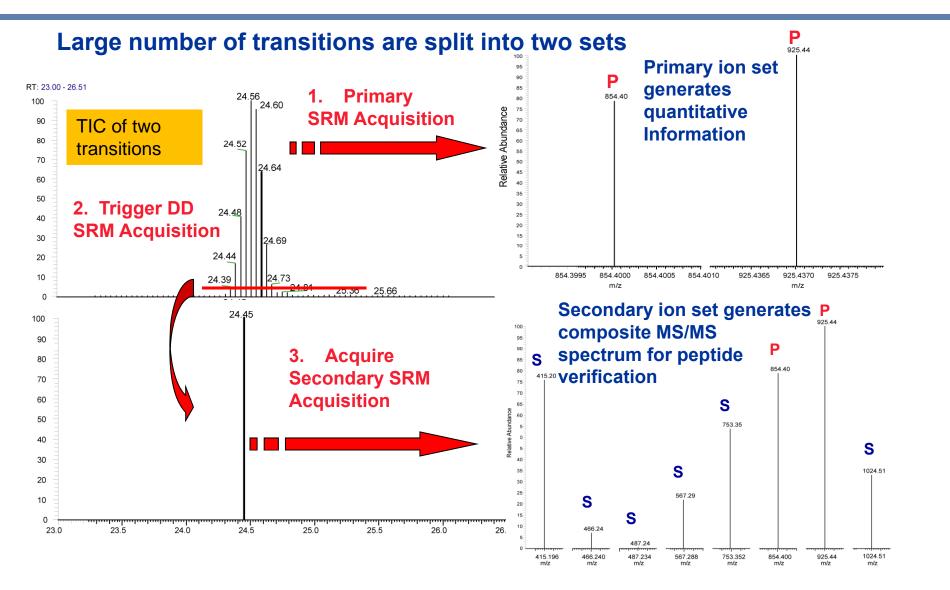

Samples are very complex and background interferences require verification of the targeted peptide peak.

Peptide verification using isotopically labeled peptides as internal standards

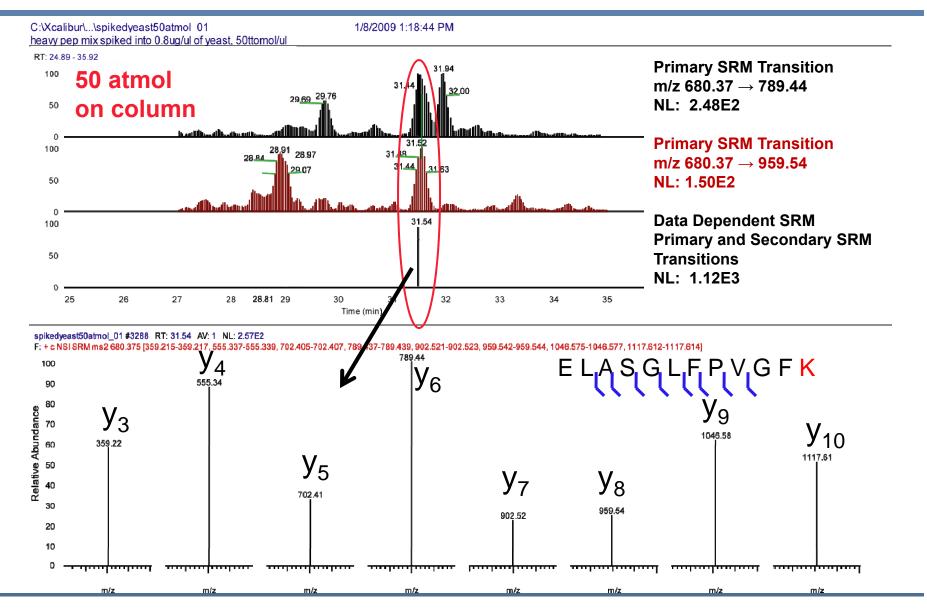

• Not practical for large scale quantitative proteomics considering the cost and time to make the internal standards

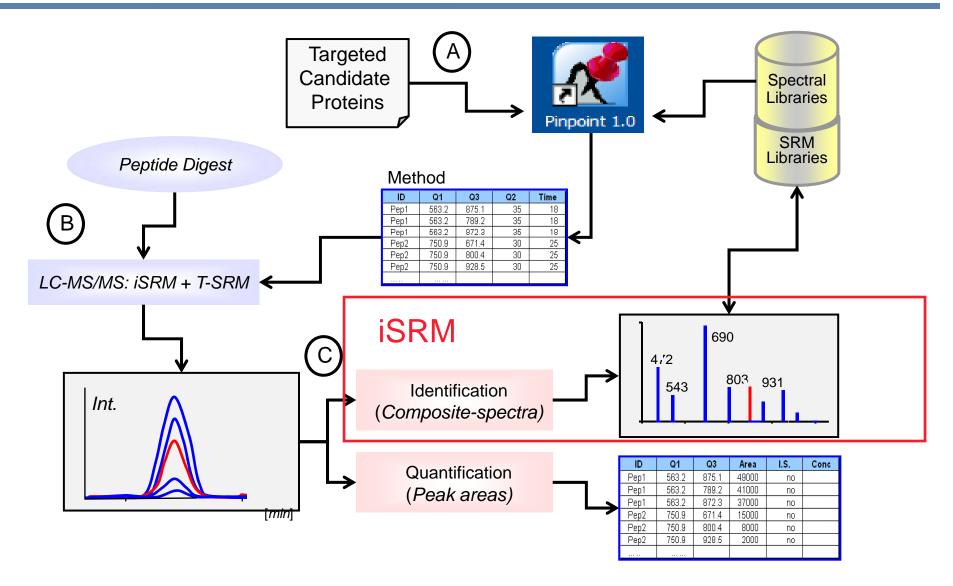
Peptide verification using SRM triggered MS/MS spectrum


- Requires a broad mass selection window
- MS/MS spectra often contain multiple components for complex biological samples
- Need longer cycle time and less sensitive



Peptide verification using composite MS/MS spectra (constituted with a large number of transitions per peptide)

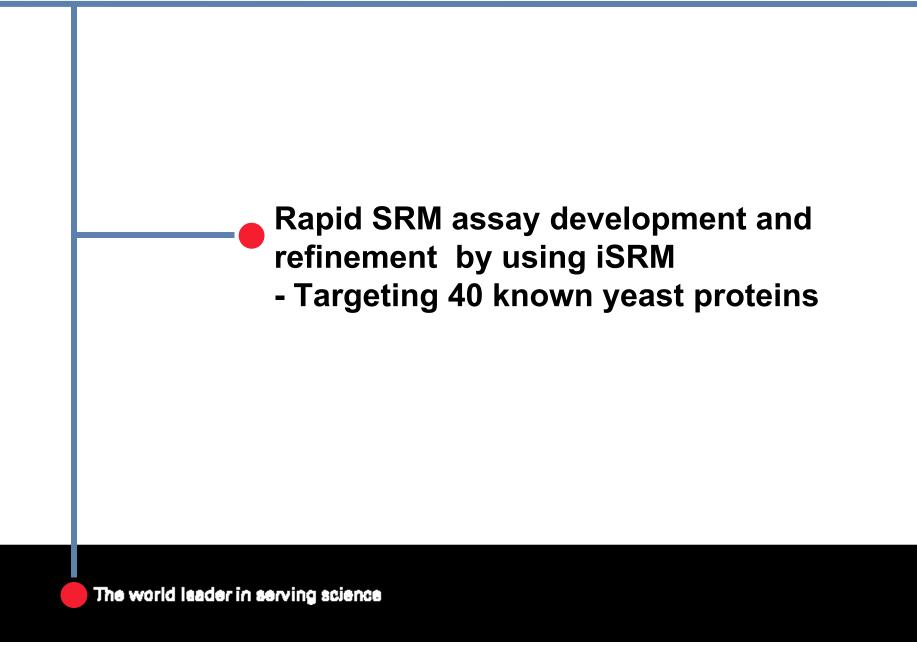

- Measurements of multiple transitions per peptide a composite tandem mass spectrum
- Narrow mass selection window (higher selectivity; Higher sensitivity
- Co-elution of all ions allows to eliminate false positive calls
- Limited throughput if constantly monitoring large number of transitions per peptide


Introducing intelligent SRM (iSRM)

iSRM – An advantage for verifying low level targets in biological matrices

Pinpoint software is integrated with iSRM workflow for automate assay design and data processing

The combination of Pinpoint and iSRM provides the capability to simultaneously verify and quantitate up to 1000 targeted peptides in a single HPLC/MS/MS experiment.


Rapid SRM assay design and refinement for the targeted protein quantification based on the discovery data.

Provide high throughput screening methods to narrow down a large number of candidate biomarkers coming out of discovery to the most promising few.

➢Provide high throughput screening methods for signaling pathway studies.

Initial peptide selection based on previous proteomics discovery data

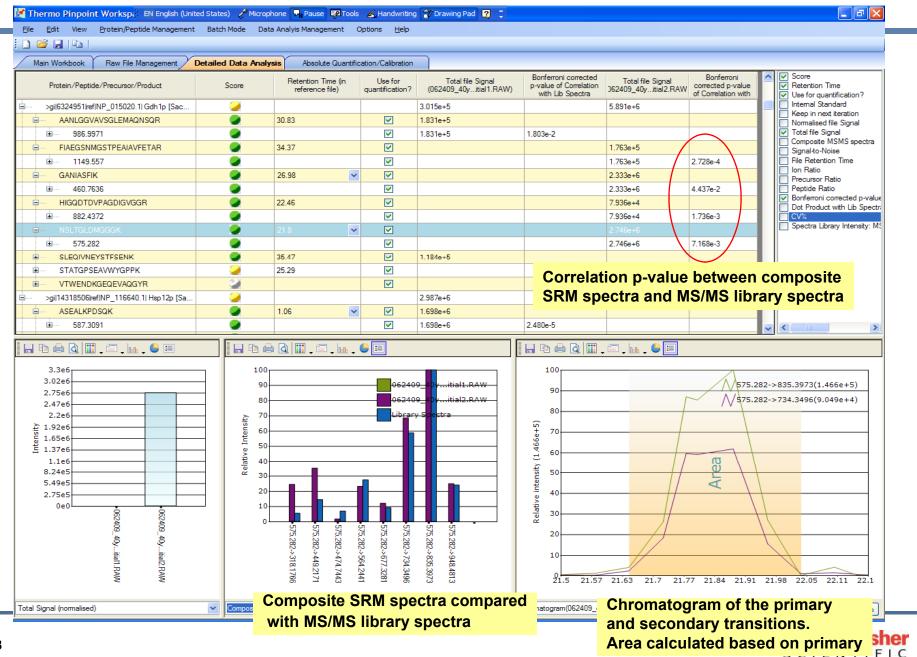
	otein/Peptide Management Batch Mode Data Analyis Management Options <u>H</u> elp	
) 🖆 📕 🕒 📔		
Main Workbook	Raw File Management Detailed Data Analysis Absolute Quantification/Calibration	
	Protein/Peptide/Precursor/Product	🔀 Spectral libraries
Alla 2	sgil6320359/ref[NP_010439.1] Cpr1p [Saccharomyces cerevisiae] rgil118110/splP14832/CYPH_YEAST Peptidyl-proly	056
208	•	Spectral Libraries
Add Protein	0GFGYAGSPFHR0	C:\Xcalibur\yeast_proteins\yeast.msf
200	•0 LYNDIVPK0	
Digest	Immediate Stranger International Stranger Int	
	Sgi[27573538 pdb 1F18 A Chain A, Crystal Structure Of Yeast Copper-Zinc Superoxide Dismutase Mutant Gly85arg	
	E E E E E E E E E E E E E E E E E E E	
5		
Add/Edit		
transitions	0 LIGPTSVVGR0	Add library Remove
	0 SVVIHAGQDDLGKGDTEESLK0	
	0 THGAPTDEVR0	Library MS2 m/z accuracy (Da) 1.0
Add/Edit	jili 13626[sp]P14540[ALF_YEAST Fructose-bisphere]	133
modifications		
		?Generate all library peptides
	B S FAIPAINVTSSSTAVAALEAAR0	
		Sequest MASCOT PeptideProphet
Export to CSV		VC
otein targets=40/40	I	XCorr (charge=1) >= 1.50 📚
ptide targets=369/369		XCorr (charge=2) >= 2.00 😂
nsitions=2952	spi6324951refINP_015020.1 Gdh1p [Saccharomyces cerevisiae] rgil2506355[spIP07262 DHE4_YEAST NADP-spectrum]	XCorr (charge=3) >= 2.50 🗢
ollision Energy ube Lens		
Start Time		Delta Cn >= 0.10 🗢
nd Time rimary		Bank <= 1
n-silico digested?	the discovery experiment	Rank <= 1 🗘
lydrophobicity Factor		Charge = All 🗸
ibrary Intensity ibrary Retention Time	B	
ibrary Charge State	III	
	Generation of the state o	rev
	giri 43 to subjeri ive_110640.11 Hsp 12b [Sacchaldiniyees celeviside] rgiri 23337/spir 22343/HSF 12_1EAST 12 kDa 1	Apply library
	0	
	B	
		2

Automatic transition selection based on the MS/MS spectral library

lain Workbook	Raw File Management Detailed Data Analysis	Absolute Quantification/Calibration	-
	Protein/Peptide/Precursor/Product	Primary	
Libra ?		romyces cerevisiae] rgil118110lsplP14832 CYPH_YEAST Pepti	
2282	0 FPDENFKK0		
Add Protein	····· 512.7585->439.2241	Select transitions in an automated fashion	Primary transitions
	512.7585->780.3881		
F (24)	····· 512.7585->390.6977	\frown	
	····· 512.7585->877.4409	Select Peptides	
Digest	····· 512.7585->275.2072	All peptides that follow in-silico digestion rules	
Digest	512.7585->665.3611	Filter by tridse in spectral library	
	512.7585->422.2756	Add library peptides that do not follow in silico digestion rules	
50	512.7585->333.1842		
Add/Edit	0 GFGYAGSPFHR0	 Randomly pick peptides (from in-silico digestion rules) 	
transitions	····· 598.2858->700.352		
	598.2858->771.3891		
S	598.2858->496.2406	Peptides by location in protein sequence	
Add/Edit	598.2858->556.2985		
modifications	598.2858->467.7299		
	598.2858->643.3305		
	598.2858->991.4739	Select Transitions	
	598.2858->386.1982	All transitions within a range	
Export to CSV	0 KVESLGSPSGATK0		
\sim	630.8433->704.3568		
tein targets=40/40 🔪 otide targets=369/369	630.8433->1033.516		
nsitions=2952	630.8433->904.4729	Specific fragment ices (or precursor charge state = 2)	
ollision Energy	630.8433->1132.584		
ube Lens	630.8433->560.3033		
tart Time nd Time	630.8433->817.4409	Two primary and additional six	
imary	630.8433->647.3353	secondary transitions per peptide are	
-silico digested? ydrophobicity Factor	630.8433->248.1599		
brary Intensity	0 LYNDIVPK0	selected based on the fragment ion	
brary Retention Time	481.2713->685.3874	intensity.	
brary Charge State	481.2713->244.165	Based on spectral library	
	481.2713->848.4507		
	481.2713->343.2334	Number of highest intensity ions to select 8 🔹 🗌 Use b ions?	
	481.2713->571.3444	P 🗢 Number of primary ions	
	481.2713->456.3175		
	481.2713 > 424.729		
	481.2713->228.6624	Maximum m/z allowed in the instrument 1500 🗢	
	0VESLGSPSGATK0		

Export initial transitions to csv file for generating the initial iSRM method

laste ment e servetere	Information for boald loganize	873 406 374 214 33		Secondary
Instrument parameters	Information for book-keeping	873.406 489.241 33 873.406 560.278 33	0 50 1 300 0 50 1 300 0 50 1 300	1 1 1
Precursor m/z	Internal Std. Amount	873.406 760.394 33 873.406 844.895 33 873.406 946.458 33	0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300	1 1 0
	Peptide Sequence	873.406 1131.538 33 873.406 1260.581 33 584.789 417.22 23 584.789 450.202 23	0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300	0
✓ Product m/z	Protein Description	584.789 499.736 23 584.789 518.268 23 584.789 528.247 23	0 50 1 300 0 50 1 300 0 50 1 300	1 1 1
Collision Energy	Krokhin Hydrophobicity Factor	584.789 633.295 23 564.789 762.337 23 584.789 899.396 23 587.309 362.203 23	0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300	1 0 1
	Precursor charge state	587.309 508.274 23 587.309 508.274 23 587.309 551.79 23	0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300	1
CE Start and Stop	Product charge state	587.309 574.283 23 587.309 702.378 23	0 50 1 300 0 50 1 300	0
Scan Time	lon Type (e.g., y5, b2 or reporter)	587.309 815.462 23 587.309 886.499 23 623.817 347.228 25 623.817 423.737 25	0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300	1 1 1
Start Time		623.817 452.248 25 623.817 475.323 25 623.817 516.769 25	0 50 1 300 0 50 1 300 0 50 1 300	0 1 0
End Time		623.817 574.283 25 623.817 590.35 25 623.817 903.489 25	0 50 1 300 0 50 1 300 0 50 1 300	1 1 1
S Lens	Collision energy is	459.256 275.171 19 459.256 346.208 19 459.256 352.19 19	0 50 1 300 0 50 1 300 0 50 1 300	1 1 1
Polarity	calculated automatically	459.256 402.714 19 459.256 561.299 19 459.256 632.336 19 459.256 703.373 19	0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300	1 0 1
Trigger 300 🗢	by using formula of	459.256 804.421 19 541.765 274.187 22 541.765 358.682 22	0 50 1 300 0 50 1 300 0 50 1 300 0 50 1 300	1
	0.034 x m/z of peptide +2	541.765 403.229 22 541.765 491.241 22 541.765 518.256 22	0 50 1 300 0 50 1 300 0 50 1 300	1
Primary/Secondary		541.765 716.357 22 541.765 787.394 22 541.765 844.415 22	0 50 1 300 0 50 1 300 0 50 1 300	0 1 0
		423.738 131.081 18 423.738 261.155 18 ••••• 40yeastprotein_initialrun_1	0 50 1 300	1
	Number of files to split into 2			
4				



iSRM instrument method set up

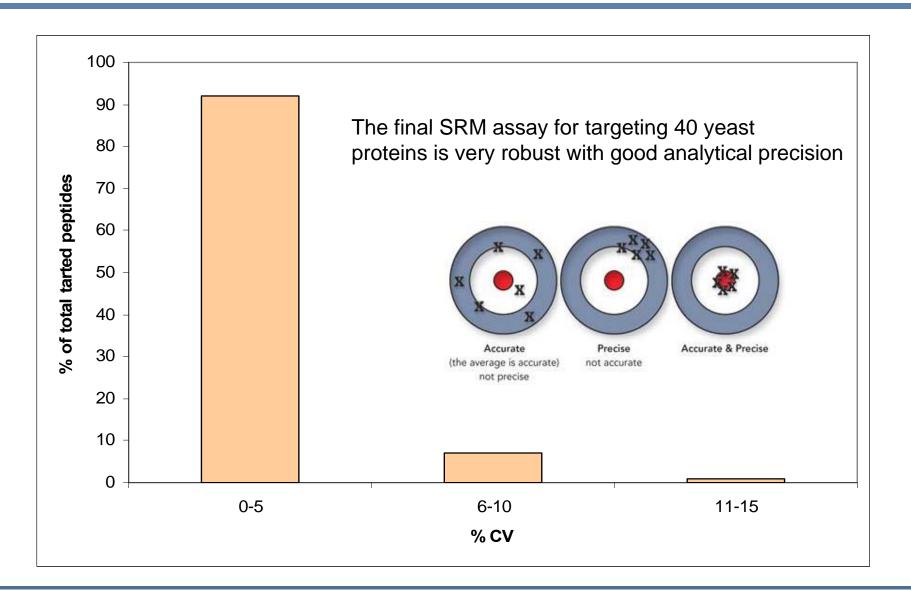
5 WE	E C	or Divert Valv	ve │ Tune Metł	nod Method 9	Summary					1	
EV.	- Run Sett MS Ar	tings cquire <u>T</u> ime (mi	n): 60.00		E	xperiment Type	: ISBM		- 1		
*TSQ Vantage					-		,				
	Chrom	n <u>F</u> ilter Peak W	idth (s): 🔽 1().0 ÷		Collision <u>G</u>	jas Pressure (n	nTorr): 1.2	<u>.</u>	☑ Use Tuned S-Lens Value	
eksigent	iSRM Se	-								Data Dependent Settings	
Eksigent LC	Q <u>1</u> Pe	ak Width (FWH	HM): 0.70	•	<u>C</u> ycle Tim	ne(s): 🔽 2.00	00 ÷	(2)		Global Settings	
Channel 2				SRM	Ctt.	61			Desetion	Dynamic Exclusion	
	#	Parent	Product	Collision Energy	Start Time	Stop Time	Polarity	Trigger	Reaction Category	Repeat Count 🥫 🕂	
			744.399	22	11.23	15.23	+	300	Secondary	Repeat Duration (min) 0.32	
Eksigent NanoLC-AS1	2		859.426 232.140	22 22	11.23 11.23	15.23 15.23	+	300 300	Secondary Secondary	Exclusion List Size 50 🕂	
Nundee Ast	4		346.183	22	11.23	15.23	+	300	Secondary		
	5	544.770	475.225	22	11.23	15.23	+	300	Secondary	Exclusion Duration (min) 0.32	
	6		494.246 532.247	22 22	11.23 11.23	15.23 15.23	+	300 300	Secondary Primary		
	8		645.331	22	11.23	15.23	+	300	Primary	User Defined Scan Window	
	9		131.081	18	11.58	15.58	+	300	Secondary	Osel Delined Scan window	
	10		261.155	18	11.58	15.58	+	300	Secondary	First Mass 10.000	
	11		332.192 338.685	18 18	11.58 11.58	15.58 15.58	+	300 300	Secondary Secondary		
	13		488.282	18	11.58	15.58	+	300	Secondary	Last Mass 1500.000	
	14		575.314	18	11.58	15.58	+	300	Primary		
	45	103 738	676 362	18	11 58	15 58	-	300	Drimaru		
	Scar	n Parameters –		()							
		can Time (s): 0	.100 🔅	(3)	<u>C</u> harge	State: 1	÷		Q <u>1</u> Peak Width (Fw	OK Cancel	Help
	– Adva	anced Data De	pendent Settin	as And Activat	ion						
	8	Z Dynamic <u>E</u> x		J						Advanced Settings	Ĵ
	<u>C</u> opy S	canEvent	<u>P</u> aste	App	end List	Import Lis	t <u>E</u>	xport List		Help <u>I</u> une	
							\land				
							5	/			
	5										

Thermo Fisher SCIENTIFIC

Peptide sequence verification and quantitation from the initial SRM assay

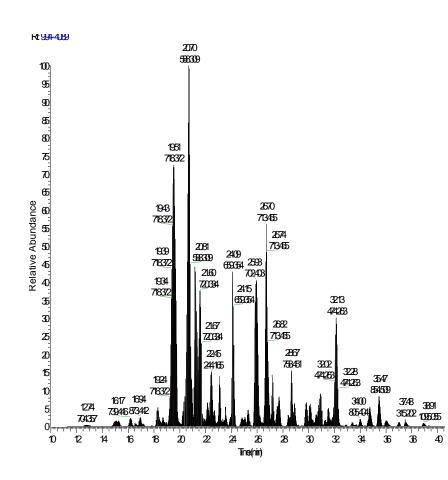
SRM method refinement based on the initial SRM assay data

Edit View Prot	ein/Peptide Management Batch Mode Data Analyis Management Options <u>H</u> elp	
	w File Management Detailed Data Analysis Absolute (Destification/Calibration	
	Protein/Peptide/Precursor/Product	
22 2	0GFGYAGSPFHR0	
289	598.2858->700.352	
dd Protein	598.2858->771.3891	
	598.2858->496.2406	Next iteration
<u>.</u>	598.2858->556.2985	
SS	598.2858->467.7299	· · · · · · · · · · · · · · · · · · ·
Digest -	598.2858->643.3305	Select peptides/transitions
		V Keep Green peptides/transitions
	598.2858->386.1982	
53	=0 LYNDIVPK0	Scheduling window size for identified transitions (min) = +/- 2.00
Add/Edit	481.2713>685.3874	🗌 Keep Yellow peptides/transitions 🍃
	481.2713->244.165	
	481.2713->848.4507 153 green colored peptides	
Add/Edit	401.2/13->343.2334	Keep White peptides/transitions
odifications	481.2713->571.3444 With confirmed nice LC peak	
	- 481.2713->456.3175 - 481.2713->424.729 - AND Shapes were selected from	
	401.27137424.723	
	481.2713-225.5624 the initial targeted 368 peptides	
port to CSV	for the final iSRM method.	
targets=40/40		
targets=153/ 3 68 ins=1224 3	566.7958->/U4.3568	
	566.7958>560.3033	
on Energy Lens	566.7958->817.4409	Filter by analysis table column 'Keep in next iteration'
Time		Automatically select best transitions
у	566.7958->248.1599	
o digested? phobicity Factor	566.7958->517.2614	Generate next iteration Cancel
y Intensity		
y Retention Time	1041.502->935.4252	
-	1041.502->1138.512	
	1041.502->590.2887	
-	1041.502->661.3258 1041.502 ~ 762.3735	
-		
-	1041.502->13/3/564	
	Sil27573538 pdb11F18 A Chain A, Crystal Structure Of Yeast Copper-Zinc Superoxide Dismutase Mutant Giv85arg	
		· · · · · · · · · · · · · · · · · · ·


SCIENTIFIC

Peptide sequence verification and quantitative precision from the refined iSRM assay

e Edit View Protein/Peptide Manage		Mode Data Analyis	s Management Op	tions <u>H</u> elp						
Main Workbook Raw File Management	t Detailed I									
	t Detailed I									
Protein/Peptide/Precursor/Product		Data Analysis	Absolute Quantificat	ion/Calibration						
	Score	Retention Time (in reference file)	Use for quantification?	Total file Signal 60940yeins_01.R/	Total file Signal 60940yeins_02.R/	Total file Signal 60940yeins_03.R/	Total file Signal 60940yeins_04.R/	Total file Signal 60940yeins_05.R	CV% (All file:	Score Retention Time Use for quantification?
>gi 6324291 ref NP_014361.1 ldh				3.346e+6	3.357e+6	3.573e+6	3.608e+6	3.550e+6	3	Internal Standard
DYAVFEPGSR	_	23.23		1.609e+6	1.617e+6	1.744e+6	1.730e+6	1.694e+6	3	Keep in next iteration Normalised file Signal
FTVTLIPGDGVGK	_	29.97	•	6.332e+5	6.266e+5	6.639e+5	6.997e+5	6.578e+5	4	✓ Total file Signal
IPDIDLIVIR	_	35.09		1.275e+5	1.169e+5	1.313e+5	1.276e+5	1.280e+5	4	Composite MSMS spectra Signal-to-Noise
I NIITEIGQK	9	24.66	•	9.764e+5	9.960e+5	1.034e+6	1.051e+6	1.070e+6	3	File Retention Time
>gi 6324950 ref NP_015019.1 Ald	_			1.695e+6	1.963e+6	2.103e+6	2.154e+6	2.102e+6	8	Ion Ratio Precursor Ratio
AFSNGSWNGIDPIDR		29.11		3.594e+5	3.469e+5	3.536e+5	3.980e+5	3.536e+5	5	Peptide Ratio
GDVDLVINYLK		33.18		4.439e+5	4.174e+5	4.566e+5	4.644e+5	4.515e+5	4	Bonferroni corrected p-valu
IAPALVTGNTVVLK		27.99		8.124e+5	7.856e+5	8.449e+5	8.544e+5	8.486e+5	3	Dot Product with Lib Spect
IVGEAITNHPK		15.94			3.327e+5	3.595e+5	3.444e+5	3.588e+5	3	Spectra Library Intensity: M
SPNIVFADAELK		28.63		7.977e+4	8.052e+4	8.807e+4	9.267e+4	8.961e+4	6	
>gi 6322066/ref NP_012141.1 Co		20.00		2.714e+6	2.740e+6	2.881e+6	2.860e+6	2.927e+6	3	
FGLEGLESVVPGIK		36.52		6.486e+5	6.195e+5	6.904e+5	6.652e+5	6.947e+5	4	
		24.14		1.415e+6	1.456e+6	1.533e+6	1.495e+6	1.517e+6	3	
									6	
		33.51		1.035e+5	9.621e+4	9.971e+4	1.143e+5	1.067e+5		
LNVLSNVVR		26.62		5.471e+5	5.685e+5	5.581e+5	5.859e+5	6.086e+5	4	
>gil6319972lref NP_010052.1 Cyt				1.875e+7	1.896e+7	2.002e+7	2.068e+7	2.025e+7	4	
DAGAISGLNVLR		28.04		7.653e+6	7.627e+6	8.083e+6	8.405e+6	8.278e+6	4	
IINEPTAAAIAYGLGAGK		31.58		9.867e+5	9.531e+5	9.887e+5	1.014e+6	9.682e+5	2	
SSNITISNAVGR	9	20.67		2.219e+6	2.189e+6	2.364e+6	2.454e+6	2.373e+6	4	< >
🗈 🖶 🖪 🛄 , 🚍 , 📠 , 🕒 🗉		🔒 🖻 🖨 🚺	🗓 . 🚍 . hn . 🌢			🛛 🔚 🖻 🖨 🖸	1 🔟 . 🚍 . 📠	_ 		
2.09e6						100		•		
1.92e6 1.74e6		jj 90	<u> </u>	<u> </u>	- <u>A</u>			(A 570 7607 .	>692.3357(1.040e+5)
1.57e6		ê 80 L 70				90		/	/.v.)	
1.05e6		,tis 60 50				1 (j 80		/	// 570.7697-:	>416.2247(6.953e+4)
1.4266 1.10566 2.1.0566 2.1.0566 2.1.0566 1.0586		5 40 ·····		H		040		/	~	
5.23e5 3.49e5		트 30 및 20				E 60		/_ſ		
1.74e5		u 20 10 0 8 9 10 10				1 if 50		/_	0 \ \	
-062 -062 -062	8	Sec.	-063	-063	-06	40 UI			A //	
2609 2609 2609	609		160 160 I	<u>160</u>	2609	. <u> </u>				
-06260940ye. -06260940ye. -06260940ye. -06260940ye.	06260940ye		06260940ye 06260940ye	06260940ye. 06260940ye.	06260940ye	05 Relative			//	
eins ins ins ins	eins		eins	eins	ens	20			//	
0_2	0 0		20_s	20_s	20_2	10		4		K
02. PAW	05.RAW		02.RAW 01.RAW	_04.RAW	_05.RAW					
~ ~ ~ ~ ~	٤		8 8	8 8	S	22.93	22.99 23.06	23.12 23.18 2	3.25 23.31 23	3.38 23.44 23.5 23.5
l Cinnal (normalized)		Dank Profile				Chromoto arr (DC	200040 inc. 02 D		Carrent'	
Signal (nomalised)	F	^p eak Profile			~	Chromatogram(06	260940yeins_02.R	Avv) 📉 🗹 Relat		Zoom Reset Change Area


SCIENTIFIC

CV percentage for targeting 153 verified peptides using iSRM

A robust SRM assay for quantitation of 40 targeted yeast proteins was developed in a few short hours

Step 1- Select Target Peptides:

369 peptides/2952 transitions (738 primary, 2214 secondary) were selected by Pinpoint based on the discovery data (20 min).

Step 2- Acquire data:

Data acquisition using above initial SRM assay (60 min).

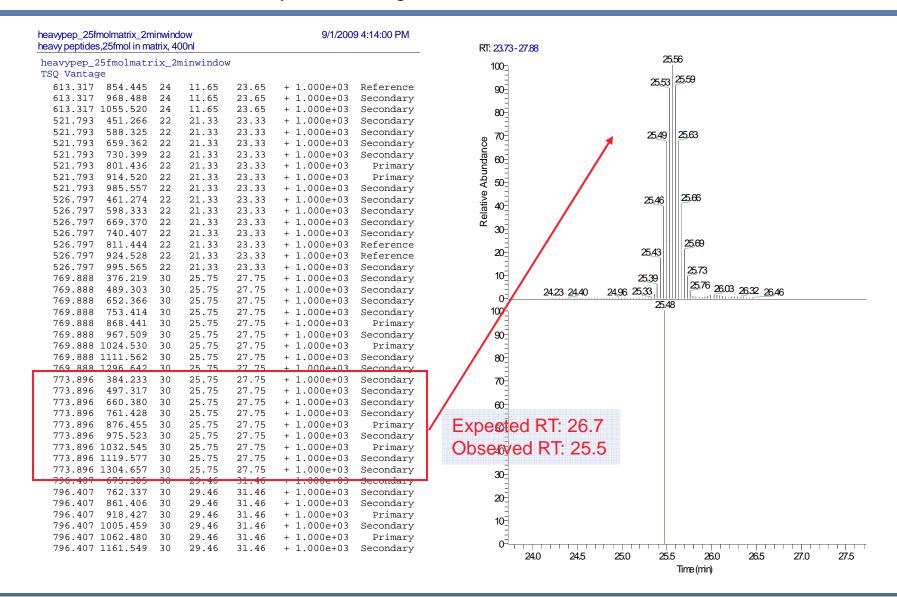
<u>Step 3 – Verify data & optimize conditions:</u> Data verification and generate optimized final SRM assay which kept only peptides that were confidently identified by composite MS/MS data and gave strong signal intensity. 153 peptides/1224 transitions (306 primary and 918 secondary) were retained in the final SRM assay (40 min).

<u>Step 4 – Validate final assay:</u>

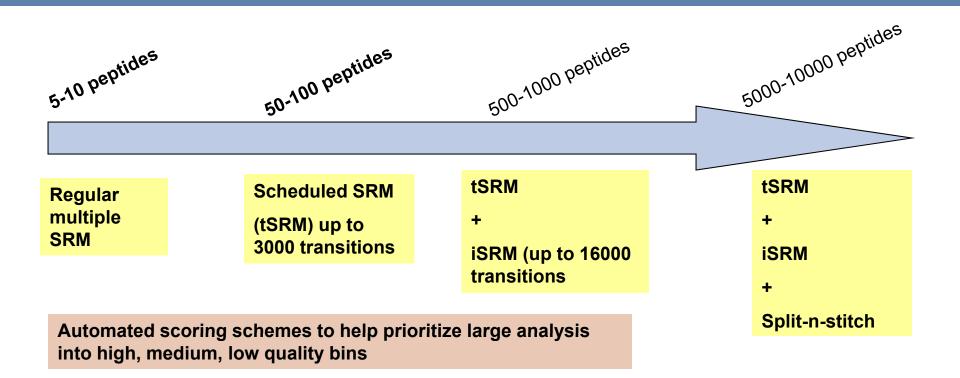
Validate the robustness and precision of final SRM assay by triplicate acquisition (60 min each, total 180 min).

Additional sensitivity can be obtained by optimizing collision energy in a single injection

ite CSV 📃 🗖 🔀	568.7904	341.116	16	9.8	29.8
	568.7904	341.118	18	9.8	29.8
	568.7904	341.12	20	9.8	29.8
ort Protein Level 🛛 Export Peptide Level 🛛 Export Transitions Level (Instrument method) 🛛 Export Optimization 🛛 Export Data Analysis : 🄨 👘	568.7904	341.122	22	9.8	29.8
	568.7904	341.124	24	9.8	29.8
	568.7904	341.126	26	9.8	29.8
	568.7904	341.128	28	9.8	29.8
On column	568.7904	428.216	16	9.8	29.8
C Parameters	568 7904	428.218	18	9.8	29.8
	568.7904	420.22	20	9.8	29.8
📀 Collision Energy Optimization: Range = predicted CE +/- 6 [🔄 eV; Step = 2 [eV	568.7904	428.222	22	9.8	29.8
	568.7904	428.224	24	9.8	29.8
For example, if the predicted CE=22eV, transitions will be created for 16 18 20 22 24 26 28 eV	568.7904	428.226	26	9.8	29.8
	568.7904	428.228	28	9.8	29.8
	568.7904	434.216	16	9.8	29.8
	568.7904	434.218	18	9.8	29.8
	568.7904	434.22	20	9.8	29.8
	568.7904	434.222	22	9.8	29.8
	568.7904	434.224	24	9.8	29.8
300	568.7904	434.226	26	9.8	29.8
c 270	568.7904	434.228	28	9.8	29.8
	568.7904	490.716	16	9.8	29.8
· 240	568.7904	490.718	18	9.8	29.8
210	568.7904	490.72	20	9.8	29.8
Ē 180	568.7904	490.722	22	9.8	29.8
P	568.7904	490.724	24	9.8	29.8
ъ 150	568.7904	490.726	26	9.8	29.8
	568.7904	490.728	28	9.8	29.8
	568.7904	557.216	16	9.8	29.8
	568.7904	557.218	18	9.8	29.8
	568.7904	557.22	20	9.8	29.8
Z 30	568.7904	557.222	22	9.8	29.8
0 10 20 30 40 50	568.7904	557.224	24	9.8	29.8
^v 0 10 20 30 40 50	568.7904	557.226	26	9.8	29.8
Retention Time (minutes)	568.7904	557.228	28	9.8	29.8
	568.7904	720.316	16	9.8	29.8
Number of files to split into 🔢 🛕	568.7904	720.318	18	9.8	29.8
Number of files to split into 1	568.7904	720.32	20	9.8	29.8
	568.7904	720.322	22	9.8	29.8
	568.7904	720.324	24	9.8	29.8
	568,7904	720.326	26	9.8	29.8
	568,7904	720.328	28	9.8	29.8
	568,7904	867.316	16	9.8	29.8
Export to CSV Cancel	568,7904	867.318	18	9.8	29.8
	568,7904	867.32	20	9.8	29.8
	568,7904	867.322	22	9.8	29.8
	568,7904	867.324	24	9.8	29.8
	568,7904	867.326	26	9.8	29.8
	568,7904	867.328	28	9.8	29.8

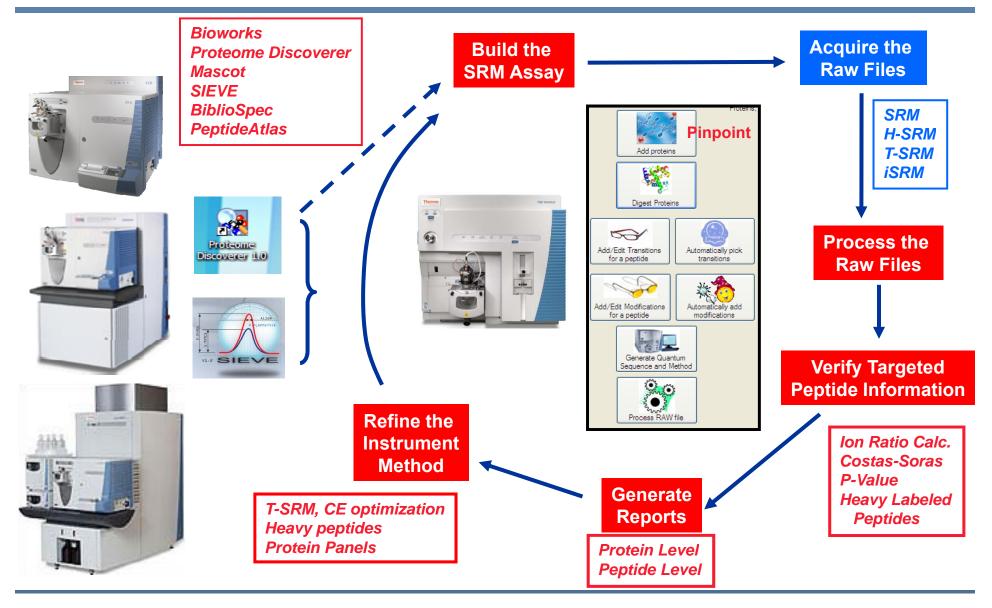

Retention time shift correction on-the-fly provides robust quantitative results across different columns and instruments

	eavypep_25f ;25fmol in ma					9/1/2009	9 2:46:42 PM	
	5fmolmatr	ix05						
SQ Vantag	le							
	: Type: iS							
	er Peak W							
	Gas Press			1.2				
	S-Lens Va							
~	dth (FWHM							
	ime Range		SRM table	e: Yes				
	e (s): 2.0	00						
DCV (V): N	lot usea							
SRM Table:								
Parent	Product	CE	Start	Stop	Pol	Trigger	React Cat	Name
609.310	347.228	24	13.65	21.65		1.000e+03	Secondary	
609.310	524.257	24	13.65	21.65		1.000e+03	Secondary	
609.310	532.308	24	13.65	21.65	+	1.000e+03	Secondary	
609.310	660.367	24	13.65	21.65	+	1.000e+03	Secondary	(empty
609.310	717.388	24	13.65	21.65	+	1.000e+03	Primary	(empty
609.310	846.431	24	13.65	21.65	+	1.000e+03	Primary	(empt
609.310	960.474	24	13.65	21.65	+	1.000e+03	Secondary	(empt
609.310	1047.506	24	13.65	21.65		1.000e+03	Secondary	
613.317	355.243	24	13.65	21.65		1.000e+03	Secondary	
613.317	528.264	24	13.65	21.65		1.000e+03	Secondary	
613.317	540.323	24	13.65	21.65		1.000e+03	Secondary	
613.317	668.381	24	13.65	21.65		1.000e+03	Secondary	
613.317	725.403	24	13.65	21.65		1.000e+03		
613.317	854.445	24	13.65	21.65		1.000e+03		
613.317	968.488		13.65	21.65		1.000e+03		(empt
	1055.520	24	13.65	21.65		1.000e+03	Secondary	
521.793	451.266	22	20.33	24.33		1.000e+03	Secondary	
521.793	588.325	22	20.33	24.33		1.000e+03	Secondary	
521.793	659.362	22 22	20.33	24.33		1.000e+03	Secondary	
521.793 521.793	730.399 801.436	22	20.33 20.33	24.33 24.33		1.000e+03 1.000e+03	Secondary Primary	
521.793	914.520	22	20.33	24.33		1.000e+03	Primary Primary	
521.793	985.557		20.33	24.33		1.000e+03	Secondary	
526.797	461.274		20.33	24.33		1.000e+03	Secondary	
526.797	598.333	22	20.33	24.33		1.000e+03	Secondary	(empt)
526.797	669.370	22	20.33	24.33		1.000e+03	Secondary	
526.797	740.407	22	20.33	24.33		1.000e+03	Secondary	
526.797	811.444	22	20.33	24.33		1.000e+03	Reference	
526.797	924.528	22	20.33	24.33			Reference	
526.797	995.565	22	20.33	24.33		1.000e+03		
769.888	376.219	30	24.75	28.75		1.000e+03	Secondary	


The TSQ series of triple quandrupole instruments allows user to assign single or multiple peaks as RT reference compounds. With the changes of chromatographic conditions, the retention time shifts from these reference compounds are captured and a linear regression curve will be generated on-the-fly that provides an offset and slope corredction to the tSRM windows of the compounds eluted afterwards. This approach enabels the use of narrow timed-SRM window without missing peaks due to retention time shifts, caused by column/mobile phase replacement, switching instrument, column clog or changing gradient conditions.

Targeted peak was detected by correcting the RT shift on the fly The time shift was created by increasing the flow rate from 300 nl/min to 400 nl/min

Scaling Options using iSRM and Pinpoint



And more...

- Single software to help iterative method building to go from protein list to absolute abundance
- Multi-threaded
- Extremely easy data and results sharing
- Customers can give video feedback
- Video help tutorials to get you started

Optimizing assays for specificity & sensitivity

Thermo Fisher SCIENTIFIC Targeted protein quantitaiton using triple quadrupole mass spectrometers is complimentary to traditional western blots

Thermo Fisher Scientific's workflow incorporates iSRM to facilitate rapid and robust method development for multiplexed assays.

Pinpoint software allows initial SRM/iSRM assay to be designed automatically by using discovery MS/MS data or theoretical prediction. It also offers unique peptide verification scheme for SRM assay refinement.

Thermo Fisher Scientific's workflow provides highthroughput peptide screens by simultaneously verifying and quantitating large number of peptides in a single HPLC MS/MS run.