Applications of Desorption Electrospray Ionization (DESI)

Richard H. Perry

Department of Chemistry Stanford University Mass Spectrometry September 26, 2011

Presented at the 2011 Stanford Mass Spectrometry Users' Meeting

For personal use only. Please do not reuse or reproduce without the author's permission.

MASS SPECTROMETRY

Identifying intermediates is critical for understanding chemical reactivity

CHALLENGES

- Short timescales
- Low concentrations
- Complex systems
 - Side reactions

METHODS

- Optical Spectroscopy NMR
 - Crystallography

$\mathbf{A} + \mathbf{B} \rightarrow \overbrace{\mathbf{I_1} \rightarrow \mathbf{I_2}} \rightarrow \mathbf{P}$

DISADVANTAGES OF THESE METHODS

- Relatively long timescales
 - Poor sensitivity
- Require relatively pure samples

Mass spectrometry (MS) overcomes many of these limitations

Continuous-Flow Reaction times of 5 ms

DISADVANTAGES OF THESE METHODS

Not easily amenable to high-throughput

Carry-over effects

GOAL

Develop a simpler and cleaner approach for studying reaction mechanisms with millisecond time resolution

Desorption Electrospray Ionization (DESI)

Z. W. Takats et al. *Science* **2004**, *306*, 471-473. R. G. Cooks et al. *Science* **2006**, *311*, 1566-1570.

Using DESI to Access the Millisecond Timescale

$$A + B \rightarrow I_1 \rightarrow I_2 \rightarrow P$$

R. H. Perry et al. Angew. Chem. Int. Ed. 2011, 50, 250-254.

Ru (II)-Promoted Hydrogen Transfer

R. Noyori and S. Hashiguchi, *Acc. Chem. Res.* **1997**, *30*, 97-102. M. Palmer et al. *J. Org. Chem.* **1997**, *62*, 5226-5228.

Kenny et al. *Chem. Commun.* **2000**, 99 Haack et al. *Angew. Chem. Int. Ed.* **1997**, 36, 285

 Previous bulk ESI-MS studies identified these species Structures supported by x-ray crystallography results using diamines

Kenny et al. *Chem. Commun.* **2000**, 99-100 Haack et al. *Angew. Chem. Int. Ed.* **1997**, *36*, 285

Ru-amide + Ru-H

Perry et al. Angew. Chem. Int. Ed, 2011, 50, 250.

CTH by DESI

Perry et al. Angew. Chem. Int. Ed, 2011, 50, 250.

Confirming Peak Assignments

Black: Calculated Grey: Experimental

Perry et al. *Angew. Chem. Int. Ed*, **2011**, *50*, 250 Perry et al. *Angew. Chem. Int. Ed.* **2011**, in preparation

Relative –NH₂ and –OH positions are necessary for reactivity

Detected species are relevant to the CTH reaction

• DESI can intercept intermediates on short timescales!!

Perry et al. Angew. Chem. Int. Ed, 2011, 50, 250.

Perry et al. Angew. Chem. Int. Ed, 2011, 50, 250.

Intermediates Formed from Reaction with the Solvent

Confirmation of the intermediates formed with methanol

Confirmation of the intermediates formed with H₂O

Summary

MILLISECONDS

- Indicates an associative mechanism
- Observe step-wise breakdown of the dimer
- Intermediates with CH₃OH and H₂O observed
- Detected species agree with proposed catalytic mechanisms

What can we learn about transfer hydrogenation catalysis?

Ru-Methyl Formate Intermediates

- Oxidative dehydrogenation of methanol to generate methyl formate
- Adventitious O₂ oxidizes Ru (II) to Ru (IV)

NMR

Oxidation of Ru (II) to Ru (IV) by Adventitious O₂

Perry et al. manuscript in preparation

MS/MS

Putting it all together...

What we discovered...

- DESI can intercept intermediates on short timescales (millisecond regime)
- Detected new Ru (II) reaction intermediates in transfer hydrogenations catalyzed by (β-amino alcohol)(arene)Ru complexes
- Detected intermediates formed in the reaction with CH₃OH and H₂O
- Detected a Ru-methyl formate species that suggests formation of methyl formate in CTH

Moving forward...

Combining the timescales of DESI and ESI provides a more complete picture of reaction pathways

Other Catalytic Reactions

Many of the proposed intermediates of these catalytic systems short-lived and have not been directly observed

C-H Amination

Nitrenoid reacts through an H-atom abstraction pathway

Cahill, Perry, Roizen, Davis, Du Bois, and Zare. manuscript in preparation.

High-Throughput Screening of Catalytic Mechanisms

DESI-MS and Electrocatalysis

- This electrocatalytic reaction results in methanol oxidation
- Transfer hydrogenation catalysts can store and release energy for the electron economy

Graphite electrode

GOAL Probe catalytic reactions on surfaces in real-time

K. R. Brownell et al. manuscript in preparation.

Another application of DESI...

Biological Tissue Imaging MS

Deciphering the relationship between lipids and the *c***-MYC gene network...**

The Many Faces of *c*-MYC

Vita and Henriksson, Semin. Cancer Biol. 2006, 16, 318

Studying *c*-MYC Expression in the Body

Conditional Transgenic Mouse Models

Giuriato et al. Semin. Cancer Biol. 2004, 14, 3-11.

Outcomes of *c*-MYC Inactivation

Felsher, D. W.Cancer Res. 2008, 68, 3081

Outcomes Depend on Tissue Type

How does the tissue location affect the mechanism of *c*-MYCinduced cancer progression and regression?

Felsher, Cancer Res. 2008, 68, 3081

Lipids, the Warburg Effect, and Cancer

Menendez and Lupu, Nat. Rev. Cancer 2007, 7, 763

A simple approach to the problem...maybe...

DESI Imaging

Ifa et al. *Int. J. Mass Spectrom.* **2007**, *259*, 8 Eberlin et al. *Angew. Chem.-Int. Edit.* **2010**, *49*, 873

What type of information can we obtain using DESI imaging MS?

Lipid Species Only Present in Normal Tissue

Liver: *c*-MYC Activated for 4 Months

m/z 215

m/z 511

lon Intensity

Tumors 'Normal' (Adjacent)

m/z 583

Lipid Species Present in Normal and Cancer Tissue

 Images show that each species has a different intensity profile across the tissue

Lipid Species Present in Both Tumor Regions

۲/۲ 583.250 ۲/2 583.250 ۲/2 583.250

۲۷۵۵ ۲۷۵۵ ۲۷۵۵ ۲۷۵۵ ид_0721 SL 11

m/z 563

m/z 748

m/z 820

m/z 796

Lipid Species Present in Only One Tumor Tissue

m/z 320

m/z 499

m/z 466

m/z 513

Lipid Species in Wild Type Tissue

Comparison of Wild Type and Adjacent Tissues

m/z 215

m/z 537

m/z 886

Plotted on the same intensity scale

Plotted on the same intensity scale

Wild Type

Adjacent

m/z 292

m/z 364

m/z 417

- Cells in the adjacent tissue are affected by the tumors – i.e. not normal
 - Species tumors release into the extracellular space?

Late Stage Tumor

m/z 772

Early

Late

m/z 320

m/z 563

m/z 466

Observe time course of each lipid

Identifying the detected species...

Just a reminder...

Fatty Acids

Monoacylglycerophosphoglycerols

Diacylglycerophosphoglycerols

Diacylglycerophosphoinositols

18:1/18:1 Diacylglycerophosphoinositol

The people who make anything possible...

Prof. Richard N. Zare Dr. Konstantin Chingin Dr. Ali Ismail Thomas J. Cahill, III

Fe and Ru CTH Prof. Robert Waymouth Dr. Antonio De Crisci Kristen Brownell

C-H Amination Prof. Justin Du Bois Jennifer Roizen

MS Instrumentation Dr. Allis Chien Dr. Pavel Aronov Ir WOC (Yale team)

Prof. Robert Crabtree Prof. Mark Johnson Nathan Schley

Biological Imaging

Prof. Dean W. Felsher Dr. Emelyn Shroff Dr. Tahera Zabuawala Dr. David Bellovin

MASS SPECTROMETRY