
The Immunoassay Guide to Successful Mass Spectrometry

Orr Sharpe Robinson Lab SUMS User Meeting October 29, 2013

What is it ?

Hey! Look at that! Something is reacting in here! I just wish I knew what it is!

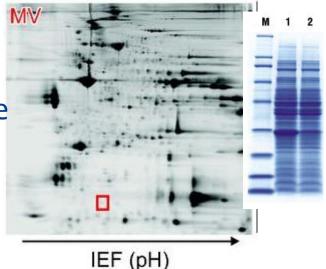
Maybe we should mass spec it!

Coffey GP et.al. 2009 JCS 22(3137-44)

True or false

 A big western blot band means I have a LOT of protein
One band = 1 protein

Big band on Western blot


Bands are affected mainly by:

- Antibody affinity to the antigen
- Number of available epitopes

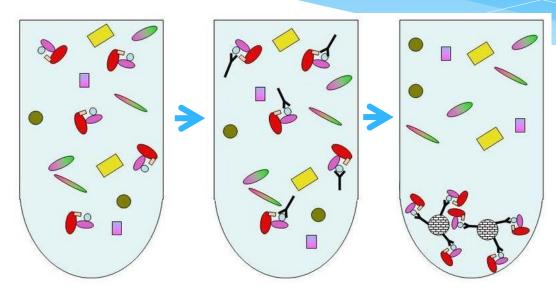
Remember: After the Ag-Ab interaction, you are **amplifying** the signal by using an enzyme linked to a secondary antibody.

How many proteins are in a band?

- * Human genome: 20,000 genes=100,000 proteins
- * There are about 5000 different proteins, not including PTMs, in a given cell at a single time point.
- * Huge dynamic range
- * 2D-PAGE: about 1000 spots are visible.
- * 1D-PAGE: about 60 -100 bands are visible
 - So, how many proteins are in my band?

Separation is the key!

Can you IP your protein of interest? Can you find other way to help with the separation? -Organelle enrichment -PTMs enrichment -Size enrichment Have you optimized your running conditions?

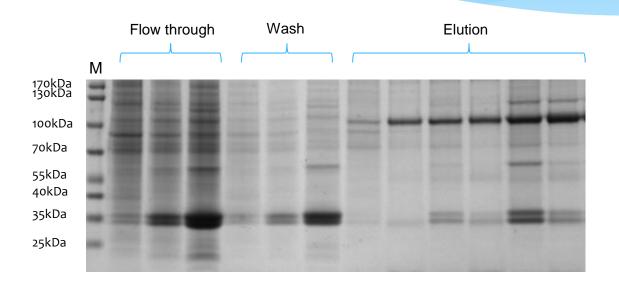

Choose the right gel and the right running conditions!

Thermo Scientific PageRuler Plus Prestained Protein Ladder

Gel type Gel concentration		Tris-Glycine										
		4-20%	8-16%	10-20%	8%	10%	12%	15%				
Runni	ng buffer			-	Tris-Glycin	e						
			Ap	parent M	olecular	Sizes (kD	a)					
	10			- 250	050	250	250	= 250				
	20	- 250	250		- 250	- 130	70	- 70				
	30	130			- 100	- 70	- 55	- 55				
Jel	40	- 70	100) — 55	- 70	- 55	<u> </u>	- 35				
% length of gel	50	- 55	_ 55	- 35	- 55	05	- 25	- 25				
leng	60	— 35		- 25		- 35						
%	70	- 25	<u> </u>		- 35	- 25	- 15	- 15				
	80	- 15	- 25	- 15	- 25							
	90	10	- 15			- 15	- 10	- 10				
10	100	— 10	10	— 10	15		10					

Gel type Gel concentration		Tris-Acetate			Bis-Tris												
		3-8% 7%		4-12%			10%			12%							
Runnin	ng buffer	Tr	ris-Ac	etate	2	MO	PS	ME	S	MO	PS	ME	S	MO	PS	MB	S
						App	arei	nt Mo	olecu	ular S	Sizes	(kD	a)				
	10										105	_	190		185	_	19
	20		0.05	-	205	-	185	-	190		185 115	=	115	_	115	_	11! 80
	30	_	205	_	120	-	115 80	=	115 80 70	-	80 65	_	80 70	Ξ	80 65	=	70
lel	40	_	120	_	85		65		50		50	-	50	—	50	-	50
% length of gel	50	_	85	_	65	_	50	_	50		00	_	30			-	30 25
e leng	60	_	65					_	30	_	30	_	25	-	30		
%	70	_	50	-	50	_	30	-	25				20	_	25	_	15
	80					-	25		15	-	25	_	15				
	90	_	30	_	30	_	15	_	19					_	15	_	10
	100	_	25	_	25	_	10	_	10	_	15	-	10				

Immunoprecipitation, in theory



Step 1: Create a complex between a desired protein (Antigen) and an Antibody

Step 2: Pull down the complex and remove the unbound proteins

Step 3: Elute your antigen and analyze

Immunoprecipitation, in real life

Lung tissue lysate, IP with patient sera , Coomassie stain Rabinovitch and Robinson labs, unpublished data

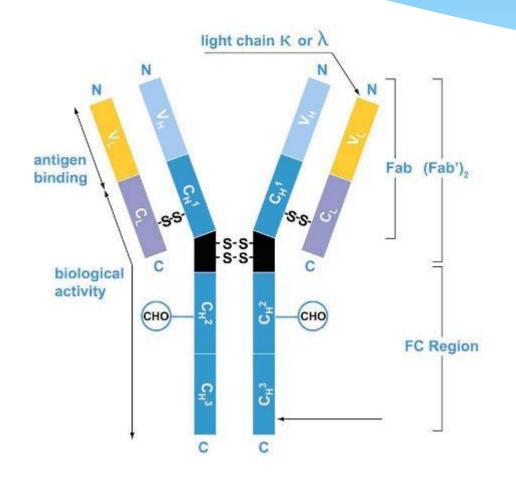
Optimizing immunoprecipitation

* You need:

- * A good antibody that can IP
- * The right beads:
 - i. Protein A
 - ii. Protein G
 - iii. Protein L
- * Each protein binds with a different affinity to different antibodies

Choosing the right bead: affinity!

Species	Antibody Class	Protein A	Protein G	Protein L
Human	Total IgG	+++	+++	+++
	IgG1	+++	+++	+++
	IgG ₂	+++	+++	+++
	IgG ₃	+/-	+++	+++
	IgG ₄	+++	+++	+++
	IgM	+/-	-	+++
	IgD	-	-	+++
	IgA	+/-	-	+++
	Fab	+/-	+/-	+++
	ScFV	+/-	-	+++
Mouse	Total IgG	+++	+++	+++
	IgM	-	-	+++
	lgG₁	+/-	+/-	+++
	IgG _{2a}	+++	+++	+++
	IgG _{2b}	+++	+++	+++
	IgG ₃	+++	+++	+++
Rat	Total IgG	+/-	+/-	+++
	IgG1	+/-	+/-	+++
	IgG _{2a}	-	+++	+++
	IgG_{2b}	-	+/-	+++
	IgG _{2c}	+++	+++	+++


Magnetic or Sepharose

* Magnetic beads:

- * Can help reduce background
- * Require a magnet
- * Sepharose beads:
 - * Can work in a column format
 - * Easier to cross-link
 - Require centrifugation or gravity

Magnetic or Seprhaose

Antibodies 101

Each antibody contain two identical copies of a heavy chain (~50Kda) and two identical copies of a light chain (~25kDa).

Each heavy and light chain is covalently joined by a disulfide (-S-S-) bond.

By adding a reducing agent, we are breaking the S-S bonds between two cysteine residues, generating 4 separate protein chains and 2 distinct bands on the gel.

Crosslinking

- * Crosslinking is the process of chemically joining two or more molecules by a covalent bond. This enables us to :
 - Capture and identify unknown protein interactors or interaction domains.
 - * **Conjugate** an enzyme or tag to an antibody or other purified protein.
 - * **Immobilize** antibodies or other proteins for assays or affinitypurification.

To crosslink or not to crosslink?

- * Pro:
 - Can stabilize the Ab-Ag interaction
 - Can be used to immobilize the Ab to beads, thus removing it completely from the elution product. This can result in a cleaner result.
- * Cons:
 - Can bind an innocent bystander, thus creating either a false positive or increase the background

Choose your crosslinker wisely!

Elution

* Elute in 1x loading buffer, then boil.

- Point of attention: choose your loading buffer with or without reducing agent.
- Only suitable for gel loading downstream applications.

Elution

Summary of elution conditions commonly used for immunoaffinity and protein-protein affinity purification:

ConditionExamplesLow pH100 mM glycine•HCl, pH 2.5-3.0 100 mM citric acid, pH 3.0High pH50-100 mM triethylamine or triethanolamine, pH 11.5 150 mM ammonium hydroxide, pH 10.5Ionic strength (and chaotropic effects)5 M lithium chloride 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphateDenaturing2.6 M guanidine•HCl (also counts as chaotropic)
100 mM citric acid, pH 3.0High pH50-100 mM triethylamine or triethanolamine, pH 11.5 150 mM ammonium hydroxide, pH 10.5Ionic strength (and chaotropic effects)5 M lithium chloride 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine+HCl (also counts as chaotropic)
High pH50-100 mM triethylamine or triethanolamine, pH 11.5 150 mM ammonium hydroxide, pH 10.5 0.1 M glycine•NaOH, pH 10.0Ionic strength (and chaotropic effects)5 M lithium chloride 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
High pHtriethanolamine, pH 11.5150 mM ammonium hydroxide, pH10.50.1 M glycine•NaOH, pH 10.0Ionic strength (and chaotropic effects)5 M lithium chloride 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
150 mM ammonium hydroxide, pH10.50.1 M glycine•NaOH, pH 10.0Ionic strength (and chaotropic effects)5 M lithium chloride 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
10.5Ionic strength (and chaotropic effects)5 M lithium chloride 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
0.1 M glycine • NaOH, pH 10.0Ionic strength (and chaotropic effects)5 M lithium chloride 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine • HCl (also counts as chaotropic)
Ionic strength (and chaotropic effects)5 M lithium chloride 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
Ionic strength (and chaotropic effects)3.5 M magnesium or potassium chloride3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
effects) 3.5 M magnesium or potassium chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
Chloride 3.0 M potassium chloride 2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
2.5 M sodium or potassium iodide 0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
0.2-3.0 M sodium thiocyanate 0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as chaotropic)
0.1 M Tris-acetate with 2.0 M NaCl, pH 7.7 100 mM sodium phenyl phosphate 2-6 M guanidine•HCl (also counts as Denaturing chaotropic)
7.7100 mM sodium phenyl phosphate2-6 M guanidine•HCl (also counts as chaotropic)
100 mM sodium phenyl phosphate2-6 M guanidine•HCl (also counts asDenaturingchaotropic)
2-6 M guanidine•HCl (also counts asDenaturingchaotropic)
2-6 M guanidine•HCl (also counts asDenaturingchaotropic)
Denaturing chaotropic)
2.8 M uros (also counts as chaotronic)
2-8 M urea (also counts as chaotropic)
1.0 M ammonium thiocyanate
1% sodium deoxycholate
1% SDS
Organic 10% dioxane
50% ethylene glycol, pH 8-11.5 (also
counts as chaotropic)
Competitor > 0.1 M counter ligand or analog

In summary....

- The key to successful MS discovery is having a clean, enriched protein
- Know your friends and your enemies
- Try to enrich and separate your protein of interest
- As proteins are very different from one to another, it might take time to really work out all the fine tuning, so be **patient**