

For personal use only. Please do not reuse or reproduce without the author's permission

Stanford MS users' meeting Theresa McLaughlin Thursday, August 21, 2008

Brief introduction to ESI & APCI ionization Qualitative Analysis

- •
- •
- •
- •
- •
- •
- •
- •

SUMS

<u>Stanford University Mass Spectrometry</u> Vincent Coates Foundation Mass Spectrometry Laboratory

Core resource for Stanford community. Also serve external academic institutions and industry researchers.

: http://mass-spec.stanford.edu

•

- •
- •

ORD JUNIOD

MASS SPECTROMETRY

SUMS HOME

SUMS Stanford University Keck Science Building Room 328 380 Roth Way Stanford, CA 94305-5080

Stanford Home

Comments & questions to the Webmaster

Last Modified 9.9.03

Welcome to the web home of the Vincent Coates Foundation Mass

Spectrometry Laboratory. The laboratory is named in honor of a generous gift from Vincent and Stella Coates, given for the purpose of supporting the mass spectrometry facility as a core resource for researchers throughout the University and elsewhere. The laboratory is also a <u>Bio-X core facility</u>, supported by James H. Clark and the Bio-X initiative in the spirit of interdisciplinary communication and collaboration.

At this time, we have in operation two quadrupole ion trap mass spectrometers and one hybrid quadrupole-time of flight MS which are equipped with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources.

Routine services include molecular weight determination, MSn, LC-MS, and protein identification by proteolytic digest, LC-MS/MS and database search. Custom analyses are available; please <u>contact SUMS</u> to discuss.

Please check back regularly, as the website is constantly being developed and updated in response to user feedback. It is our hope that these pages will be a valuable resource to you.

 SUMS Home
 Instruments
 Services
 Sample Prep
 Rates

 Forms
 FAQ
 Publications
 Tools & Links
 Contact Info

ZQ Quadrupole MS

- Single Quadrupole LC-MS
- Waters Alliance HPLC and MassLynx Open Access software
 - Open Access for
 Stanford community
 - MW determination
 - Short column LC-MS

6

LCQ Classic MS

- Quadrupole Ion Trap LC-MS
- ThermoFinnigan Surveyor HPLC & LCQ "Classic" MS
 - MW determination
 - Analytical LC-MS
 - MSⁿ

7

Q-Tof API

REMOVABLE SAMPLING CONE

•Hybrid Tandem Quadrupole – Time of Flight MS

HEXAPOLE

TRANSFER OPTICS

QUADRUPOLE MS

HEXAPOLE

COLLISION CELL

REFLECTRON

MS MODE

QUADRUPOLE

Micromass Q-Tof

MASS SPECTROMETRY

High resolution MS
Protein identification & characterization *De novo* peptide sequencing
Post-translational modification ID 8

TOF-MS

The Mass Spectrometer: Components

1. Ion source

2. Mass analyzer, including:

- a. Mass filter (quadrupole, ion trap, TOF, etc.)
- b.Vacuum system
- c. Some electronics

3. Detector (photomultiplier or electron multiplier)

4. Data storage, (processing), and output device (usually a computer)

What is API?

• Atmospheric Pressure Ionization

- ESI Electrospray Ionization
 - Soft ionization technique
 - Solution-phase process (for the most part)
- APCI Atmospheric Pressure Chemical Ionization
 - Gas-phase process
- An interface between HPLC and Mass Detection
 - Designed to separate and ionize analytes from HPLC solvents

Electrospray – Basic Layout

Heated Capillary or Skimmer

Leading Theories

Ion evaporation - Dole Model (1968)

- Studied/Supported by Röllgen et al. 1989
- Requires formation of extremely small droplets (r~1nm) containing only one ion.
- Solvent evaporation leaves formation of a gas phase ion
- Also known as Single Ion in Droplet Theory (SIDT)

Leading theories

Ion ejection - Iribarne and Thompson Model (1976)

- Ion emission from highly charged droplets
- Requires critical onset size and charge (r=8~10nm & n~70+ charges)
- Does not require formation of very small droplets (r~1nm) that contain only one charge

APCI: Atmospheric Pressure Chemical Ionization

Mechanism for positive ion formation

Primary ion formation:

 $N_2 + e^- \rightarrow N_2^{+\bullet} + 2e^ H_2O + e^- \rightarrow H_2O^{+\bullet} + 2e^-$ Secondary ion formation:

 $H_2O^{+\bullet} + H_2O \rightarrow H_3O^+ + {}^{\bullet}OH$ Analyte ion formation: $H_3O^+ + Analyte \rightarrow [Analyte + H]^+ + H_2O$

APCI - Basic Layout

Quadrupole Ion Trap

ESI or APCI ?

- Many compounds can be analyzed by both techniques with different sensitivities
- ESI is for highly polar compounds
- ESI is for molecular weights >1000 amu
- ESI is for thermally fragile compounds
- APCI generally gives more fragmentation
 - MASS SPECTROMETRY

Analyte Compatibility

- •
- •
- •
- •
- •
- •
- •
- •

- •

Qualitative Analysis

MW determination for Small Molecules

D:\Xcalibur\data\Red_01

FD&C 3

MASS SPECTROMETRY

Sucrose

21

ESI+ adducts

- M+H+
- M+Na⁺
- M+NH₄+
- 2M+H⁺ⁿ
- M+nHⁿ⁺

ESI- adducts

- M-H⁻
- M+Cl⁻
- M-H+acid⁻
- 2M-H⁻
- M-nHⁿ⁻

- •
- •
- •
- •
- •
- •
- •
- •

- •

Qualitative Analysis

MW determination for Biomolecules

D:\Xcalibur\data\Mb 01

horse heart myoglobin

Formula to								
calculate charge of								
an ion in the								
distribution								

 $M_n = n+1$ (M_n- M_{n+1})

12 x 1413.4 = 16961-12 = 16949

Auto Deconvolution Step 2

Auto Deconvolution Step 1

D:\Xcalibur\data\Mb 01

horse heart myoglobin

- •
- •
- •
- •
- •
- •
- •
- •

- •

Qualitative Analysis

High Resolution MW determination or accurate mass determination

High Resolution MS

- The Journal of Organic Chemistry compound characterization checklist:
- "For most new compounds, the data should include...
- HRMS or elemental analysis data, and
- a copy of a proton NMR spectrum in the supporting information."

32

- Synthetic pathway is documented
- Purified material is used for analysis

High-Resolution MS – Q-Tof

Centroided Spectrum

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons

810 formula(e) evaluated with 8 results within limits (up to 50 closest results for eact

Mass	Calc. Mass	mDa	PPM	DBE	Formula	Score	С	Н	N	0	Na
422.1798	422.1801	-0.3	-0.8	9.0	C19 H26 N4 O7	4	19	26	4	7	
	422.1804	-0.6	-1.5	10.5	C20 H25 N5 O4 Na	3	20	25	5	4	1
	422.1791	0.7	1.7	5.5	C19 H29 N O8 Na	5	19	29	1	8	1
	422.1788	1.0	2.3	4.0	C18 H30 O11	6	18	30		11	
	422.1783	1.5	3.6	22.0	C31 H22 N2	8	31	22	2		
	422.1815	-1.7	-4.0	8.5	C21 H28 N O8	1	21	28	1	8	
	422.1818	-2.0	-4.7	10.0	C22 H27 N2 O5 Na	2	22	27	2	5	1
	422.1777	2.1	4.9	6.0	C17 H27 N4 O7 Na	7	17	27	4	7	1
<											
AH XII-20 031103_12403_AH 132 (2.257) AM (Cen,4, 80.00, Ar,5000.0,0.00,1.00); Sm (SG, 2x3.00); Sb (5,40.00 422.1798 2.26e4 % 421.2180 422.0731 422.6973 423.1862 423.7027 424.1897 424.7218											
0 4-4-4	421.00		422.00		423.00	424	1.00			+-+-	ma
MASS SPECTROMETRY											

[M+Na]⁺ $C_{19}H_{29}NO_8Na$ MW 422.1791

Andrew Hinman 35

Elemental Composition Report

422.1791 amu, 1.7 ppm, C₁₉H₂₉NO₈Na

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons

MASS SPECTROMET

810 formula(e) evaluated with 8 results within limits (up to 50 closest results for each

\											
Mass	Calc. Mass	mDa	PPM	DBE	Formula	Score	С	Н	N	0	Na
422.1798	422.1801	-0.3	-0.8	9.0	C19 H26 N4 O7	4	19	26	4	7	
	422.1804	-0.6	-1.5	10.5	C20 H25 N5 O4 Na	3	20	25	5	4	1
	422.1791	0.7	1.7	5.5	C19 H29 N O8 Na	5	19	29	1	8	1
	422.1788	1.0	2.3	4.0	C18 H30 O11	6	18	30		11	
	422.1783	1.5	3.6	22.0	C31 H22 N2	8	31	22	2		
	422.1815	-1.7	-4.0	8.5	C21 H28 N O8	1	21	28	1	8	
	422.1818	-2.0	-4.7	10.0	C22 H27 N2 O5 Na	2	22	27	2	5	1
	422.1777	2.1	4.9	6.0	C17 H27 N4 O7 Na	7	17	27	4	7	1
											1 a
<											
AH XIL20											
031103	12403 AH 133	2 (2 257) AM (C	en 4-8(0.00 Ar 5000.0.0.00.1	00): Sm	(8G-2	x3.00) [,] Sh	(5.4)	n or
001100_	12400_141101	(2.20)	422	4700	0.001/11/00000.010.0011.	00,, 0	(00, 2		<u>, </u>	22	ñe/
100g			422.	1730						2.2	00-
- %-					100.4000						
-	101.0100	422	.0731	1	423.1862		10/ 10	07.			
0-4	421.2180		<u></u>	<u> </u>	42	(3.7027 *	+24.10	97 4	24.7	218	mb
	421.00	1	422.00		423.00	424	1.00				

[M+Na]⁺ C₁₉H₂₉NO₈Na MW 422.1791

Andrew Hinman 36

- •
- •
- •
- •
- •
- •
- •
- •

- •

Qualitative Analysis

LC-MS and LC-MSn

LC-MS of cough syrup

Data dependent MS²

Tips for Analysis of Unknowns

If there is a proposed structure, provide a standard along with the unknown sample whenever possible.

If no standard is available, isolation of the peak of interest to obtain H-NMR or synthesis of the proposed structure may still be necessary for definitive identification.

4N

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

Conclusion

Acknowledgements

Acknowledgements

SUMS:

- Allis Chien
- Chris Adams
- Karolina Krasinska
- Pavel Aronov

Thermo Fisher Scientific

Rohan Thakur

Funding:

- Stanford Bio-X Initiative
- Vincent Coates Foundation

42