

Karolina Krasinska

For personal use only. Please do not reuse or reproduce without the author's permission

Overview

- Introduction: Why choose mass spectrometry for quantitative analysis?
- Background: Instrumentation, workflow
- Assay development: Step by step, hypothetical project

2

- Quantitative LC-MS/MS assay
- Common issues:
 - Matrix effect
 - Internal standard (IS)
 - Method validation
 - Analyte stability
- Project summary

Quantitative mass spectrometry

Applications:

- Drug discovery
 - pharmacokinetic studies
- Environmental analysis
 - pesticides and herbicides in fruits
 - contaminants in water
 - BPA leaching from plastic baby bottles
- Protein expression
- Differential analysis

Sample types

- Small molecules, MW 100 2000 Da:
 - synthetic molecules
 - drugs
 - metabolites
 - peptides (proteins)
- Biological matrices:
 - plasma, serum, erythrocytes
 - cerebrospinal fluid (CSF)
 - urine
 - bile
 - cell culture media
 - plant and animal tissues (e.g. leaf, brain, liver)

MS vs. UV detection

- Advantages:
 - Sensitive targeted analysis
 - Selective
 - detection of specific (m/z) in complex biological matrix

5

- additional level of selectivity achieved with MS/MS
- Structural information unique fragmentation pattern
- Fast automated, higher throughput
- Disadvantage:
 - Expensive
 - …or is it?

Analysis and data processing overview

B) Data processing

Triple quadrupole analyzer

SRM vs. Full Scan MS and SIM

Full scan MS

Selected Ion Monitoring (SIM)

Selected Reaction Monitoring (SRM)

Advantages of SRM scanning mode

- MS/MS provides higher sensitivity and selectivity, enabling
 - Less extensive sample preparation
 - Greater sensitivity via increased selectivity
 - Use of shorter HPLC columns
 - Use of shorter run times and higher sample throughput
- Translates into time and effort savings, plus a more sensitive method

9

Hypothetical project

A scientist is working on a new drug candidate X

- Compound X is administered to rats
- Compound X is metabolized to Y and Z
- Blood samples are collected at 6 time points

Scientist wants to know

- how fast the drug is eliminated from the body of the rat
- PK profiles for metabolites Y and Z potential toxicity of Z

Before we start – checklist

Questions:

- What are the analytes? (MW, structure, X=400, Y=416, Z=416 solubility, stability)
- Sample types? (matrices)
- Desired/required LLOQ and calibration range?
- Is an IS available?
- Purpose of developing the assay? (preliminary studies, confirmation of findings from different methods, publication)
- Available funding and timelines?

MASS SPECTROMETRY

Our project:

Serum

1 fmol up to 10 pmol on column

Isotopically labeled X is expensive, 8 week lead time Preliminary data on PK of X, Y, Z

Limited funding, 3-4 weeks

Assay development outline

- Mass spectrometry (MS)
- Liquid chromatography (LC)
- LC-MS/MS method optimization and characterization
- Sample preparation

Method development - mass spectrometry

- Acquisition of MS and MS/MS spectra for standard solution of the analyte
 - 10-50uM, (20uM X, 20uM Y, 5uM Z)
 - direct infusion
- Precursor ion fragment ion MS parameters optimization
 - most efficient ionization, M+H⁺ ions observed for
 - X, Y and Z; Y in-source fragmentation (loss of H_2O)
 - most efficient fragmentation
- Method set up and test run
 - X: m/z 401 \rightarrow 152
 - Y: m/z 417 \rightarrow 300
 - Z: m/z 417 \rightarrow 278

MASS SPECTROMETRY

Liquid chromatography

- HPLC column
 - RP type column (C18, NH₂, SCX etc.)
 - Retention (weak)
 - Separation (X and Y co-elute, need to be separated because of in-source fragmentation of Y)
- Mobile phase
 - Gradient elution (water, acetonitrile)
 - MS compatible solvents and buffer modifiers (20 mM ammonium formate pH 4)
- Gradient
 - Shortest runs possible (usually 4-8 min. per injection)
 (7 min.)

LC-MS method optimization & characterization

- Calibration curve (linear 0.2 fmol 5 pmol)
- Limit of detection (LOD) (X: 0.2 fmol; Y, Z: 2 fmol)
 - 3:1 signal-to-noise ratio
- Limit of quantitation (LOQ)
 - 10:1 signal-to-noise ratio
- Sample matrix interferences
 - analysis of blank sample matrix spiked with pure standard (some interference)
- Carryover (none)
- Stability of the analyte (?)

Sample preparation

- Objectives:
 - Isolating analyte from matrix
 - Removing contaminants, desalting
 - Concentrating analyte
 - Reconstituting in appropriate LC-MS compatible reagent
- Extraction methods:
 - dilution
 - protein precipitation (cold, acidic methanol)
 - Methanol
 - Acetonitrile
 - Solid Phase Extraction (SPE)
 - C18
 - Ion exchange (e.g. SCX)
 - Liquid-liquid extraction (e.g. MTBE, diethyl ether)
 - Combination of two or more of the above

MASS SPECTROMETRY

Quantitative LC-MS/MS assay

Each set of analyzed samples contains the following:

- 6-8 point calibration curve sets (in triplicate). A calibration curve set is usually run at the beginning, end and middle (at least one) of the sample set
- 1 QC per 10 samples (in triplicate)
- n# of samples (in triplicate)
- blank injections if necessary

Results - QuanLynx report

Most common challenges

- Matrix effects
- Internal standard (IS)
- Method validation

Matrix effects

- Matrix effects:
 - Ion suppression
 - Interferences from metabolites
 - Signal enhancement
- Assessment of matrix effect:
 - Post-column infusion of analyte
 - Comparison of analyte in matrix-free solution vs. spiked blank matrix – extraction efficiency assessment

20

- Minimizing matrix effects:
 - Use isotopically labeled internal standard
 - Generate "cleaner" extract
 - Optimize HPLC method

Internal standard – to use or not to use?

• Benefit of IS:

- If the analyte and IS suffer the same losses and the same effects in the matrix, matrix effects and sample losses cancel when we take the ratio of IS to analyte
- IS compensates for common analyte losses:
 - Protein binding
 - Analyte absorption on surfaces
 - Extensive sample manipulation
 - Degradation
 - Evaporation
 - Autosampler variability

21

Selecting an Internal Standard

• IS criteria:

- Maximum similarity in physical, chemical and chromatographic properties
- Mass difference >4 Da
- IS choices:

- Isotopically labeled (expensive, 8 week lead time)
- Chemical isomer, e.g. leucine & isoleucine

Chemical analogue, e.g. methyl- or chloroderivative (methyl- and chloro- derivatives available; methyl- not good)

Method Validation

- Detection capability:
 - LOD signal to noise ratio 3:1
 - LOQ signal to noise ratio 10:1
- Calibration curve linear dynamic range
- Precision, accuracy and recovery
- Selectivity
- Stability of analyte (and matrix):
 - Short-term, long-term
 - Low and high concentrations
 - Analyte in sample solvent and in raw matrix

23

- Dry extract, reconstituted standard/extract
- Freeze/thaw cycles

Summary of hypothetical project

- MS SRM transitions:
 - X: m/z 401 \rightarrow 152
 - Y: m/z 417 \rightarrow 300; most intense transition was m/z 417 \rightarrow 401
 - Z: m/z 417 \rightarrow 278
- HPLC:
 - C18 column
 - in order to retain polar analytes, ammonium formate used as mobile phase modifier
 - 7 min. gradient necessary to achieve separation of X and Y
- LLOQ of X, Y and Z: 0.5 fmol
- Calibration curve range: 0.2 fmol to 10 pmol
- IS: chloro-derivative of X
- Sample preparation: protein precipitation at low pH reduced analyte-protein binding
- Full method validation was not performed based on the PK results, X not a good drug candidate

MASS SPECTROMETRY

Literature references

- 1. Mass Spectrometry: Principles and Applications by Edmond de Hoffmann, Vincent Stroobant
- 2. Trace Quantitative Analysis by Mass Spectrometry by Robert K. Boyd, Cecilia Basic, Robert A. Bethem
- 3. Mass spectrometry in drug metabolism and Pharmacokinetics by Ragu Ramanathan
- 4. HPLC for Pharmaceutical Scientists by Yuri V. Kazakevich, Rosario LoBrutto
- 5. LC/MS: A practical User's Guide by Marvin McMaster

25

6. www.ionsource.com

Acknowledgements

Stanford University Mass Spectrometry Staff

- Allis Chien
- Chris Adams
- Pavel Aronov
- Theresa McLaughlin

Vincent and Stella Coates Foundation

