LC-MS/MS QUANTITATION IN DRUG DISCOVERY & DEVELOPMENT

Ludmila Alexandrova

2 September 2010

For personal use only. Please do not reuse or reproduce without the author's permission.

Presentation Outline

- Bioanalysis and Metabolites in Drug Discovery and Development
- Case Study
 - Quantification of Phthalates in Urine
- Conclusion

What is Bioanalysis?

 Bioanalysis employed for the quantitative determination of drugs and their metabolites in biological fluids, plays a significant role in the evaluation and interpretation of bioequivalence, pharmacokinetic and toxicokinetic studies (Viswanathan c.t. et al. Workshop/conference Report, AAPS Journal 2007; 9 (1) Article 4)

Metabolites and Bioanalysis In Drug Development

LI LO CCS	CLS	P1	P2	P3	Market		
Identify and profile animal	metabolites						
In vitro	In viv	/o (cold/C ¹⁴)					
Identify and profile huma	n metabolites						
In vitro	In vivo (cold/C ¹⁴)						
 Bioanalytical methods 							
P Non-GLP method		GLP method					
GLP: Good Laboratory Practice	P: Parent M	1: Metabolite(s)					

The cost to bring a drug to the market is about \$1.3 billion (US FDA, 2004)

MS Instrumentation of Choice

• Bioanalysis

- Triple Quadrupoles
 - Most of the Quantitative Assays are Performed in Multiple Reaction Monitoring (MRM) Mode

Metabolite Identification

- Ion Traps
- Q-Tofs
- Triple Quadrupoles

Bioanalysis in Drug Discovery Phase

Scope

Determine Concentrations/Exposures in Pharmacokinetic (PK), Pharmacodynamic (PD) Studies

Requirements and Challenges

- Significant Throughput for the Screening Across Different Chemical Series
- Generic Assays are Preferred/Automated Method Development
- No Stable Isotope Internal Standard
- Unknown Compound/Metabolite Stability
- No QC Samples to Verify Method Performance

Bioanalysis in Preclinical Phase

Scope

 Determine Concentrations/Exposures in Toxicokinetic Studies Using Validated Assays to Evaluate Drug Safety

Requirements and Challenges

- Full Validation Required
- Stability in Matrix Investigated
- Highly Regulated: Conducted According to Good Laboratory Practice (GLP) and Most Activities Should Follow Standard Operation Procedures (SOP)
- More Work for Troubleshooting and Validation to Produce Rugged and Robust assay
- Time Constraint: Validation Completed Before the Actual Study Starts
- Long-Term Use for Routine Analysis
- The Bioanalytical Assay Becomes a Part of Regulatory Submission (e.g. IND)

Bioanalysis in Clinical Phase

Scope

• Determine Concentrations/Exposures in Clinical /Bioequivalence Studies (Phase 1 - Phase 3)

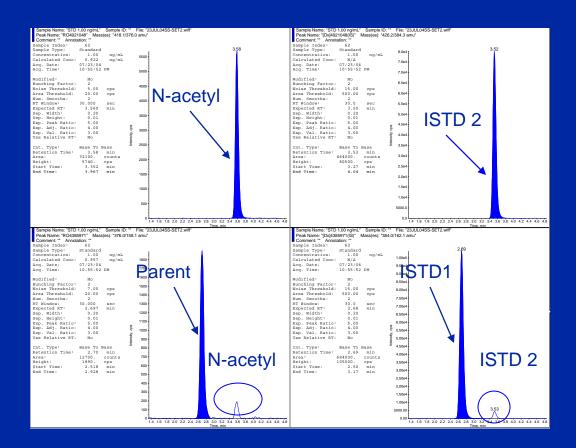
Requirements and Challenges

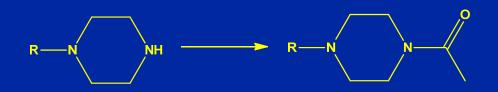
- Assay Adjusted for Human Matrices (Plasma, Serum, Urine)
- Ultra-Sensitive Assay May be Required
 - Novel Target is Pursued
 - Microdosing
- Long-Term Usage is Desirable: Preferable to Use the Same Assay Through Phase 1 – Phase 3 clinical studies
- Assay Flexibility with Regards to Concomitant Medications or Background Interferences
- Fast Turn Around for First in Man Studies

Analytical Approaches for Bioanalysis

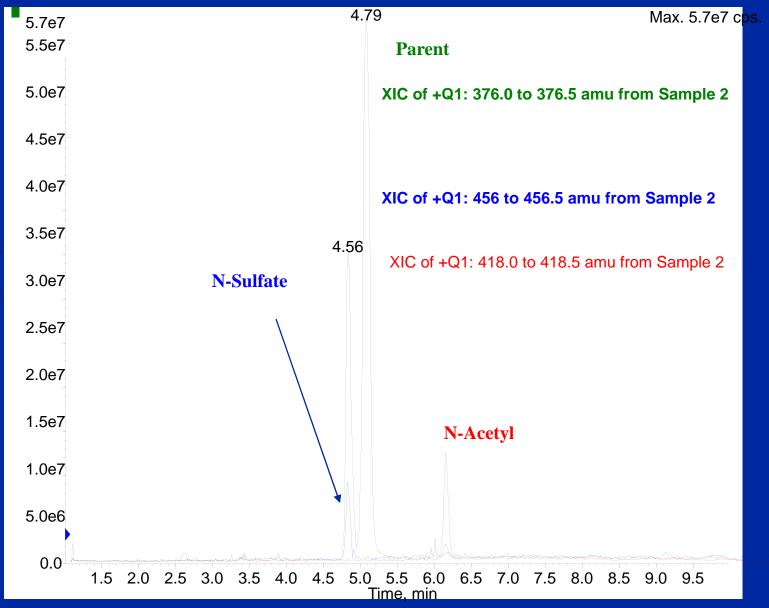
• LC/Ultraviolet (UV)/Fluorescence

- Due to Low (if any) Specificity of Detectors Not Much in Use for Over a Decade
- LC/MS
 - Most of the Assays are Performed Using Triple Quadrupole Instruments Operating in Selected Reaction Monitoring (SRM) Mode
- Ionization Techniques
 - APCI
 - More appropriate for Poorly Ionized Analytes
 - Less Matrix Effect
 - ESI
 - With Biological Matrices ESI is Prone to Ionization Suppression/Enhancement
 - Sample Purification is Required


Liquid Chromatography in Bioanalysis


- Role of Chromatography for Bioanalysis Changed
- Baseline Separation is Not Required Due to High Selectivity of MRM
 - LC Remains an Important Method for
 - Concentration of Analytes During Injection or
 - Minimize Matrix Suppression

Only in Selected Cases Separation of Analytes is Required


- Low Level of Detection
- Phase II Metabolites

Phase II Metabolites Interference

Phase II Metabolites Interference

itensity, cps

13

Sample Preparation Techniques in Bioanalysis

Goal

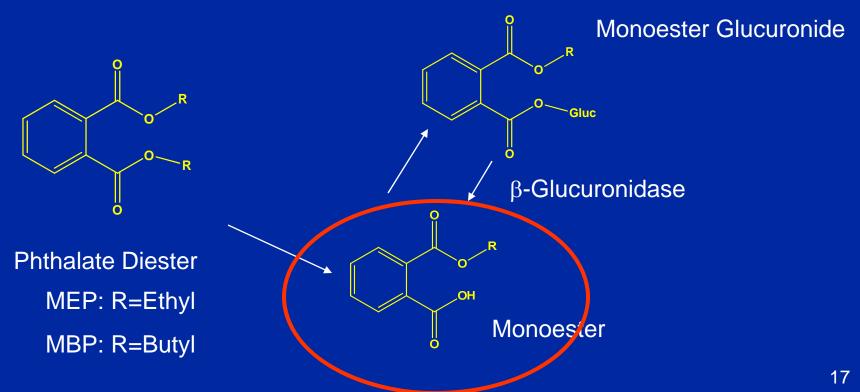
- Increase Sensitivity and Selectivity
- Minimize Ion Suppression
- Concentrate Sample
- Most Popular Techniques
 - Protein Precipitation (PPT)
 - Liquid-Liquid Extraction (LLE)
 - Solid Phase Extraction (SPE)
 - On line
 - Off line

Case Study

Scope

 Develop Bioanalytical Method for Quantification of Urinary Phthalate Metabolites

Assay Requirements


- Urine
- Two Analytes
 - Total Monoethyl Phthalate (MEP) (Free and Glucuronidated)
 - Total Monobutyl Phthalate (MBP) (Free and Glucuronidated)
- Stable Isotope Labeled Internal Standards
- MEP and MBP Glucuronides are not available
- Lower Limit of Quantification LLOQ=5 ng/mL
- LC-MS/MS

Background

- People are routinely exposed to phthalates because of their wide use as industrial solvents and plasticizers
- Diethyl and dibutyl phthalates are widely used in perfumes, cologne, soap, shampoo, nail polish and cosmetics
- Some phthalates and their metabolites are responsible for reproductive and developmental toxicities in animals
- Phthalate monoesters and their respective metabolites used as urinary or serum biomarkers of phthalate exposure

Phthalate Metabolism

- In Humans, Phthalate diesters are metabolized to their respective monoesters which are partially glucuronidated
- Excreted through Urine and Feces

Challenges of the method

- Develop Hydrolysis procedure to determine total monoester amount
 - Free monoester+congugated monoester
- Possible Matrix effect
- Needs to be pre-concentrated and purified before injection
 - Off line SPE
 - On-line SPE

On-line SPE Procedure Implemented

Silica based monolithic column for sample pre-concentration/purification

Column: Chromolith Flash RP-18e column (4.5x25mm, Merck KGaA, Germany)

Back-flush to Analytical column – MS

Column: Eclipse Plus, Phenyl Hexyl 2.1x150mm, 5um (Agilent)

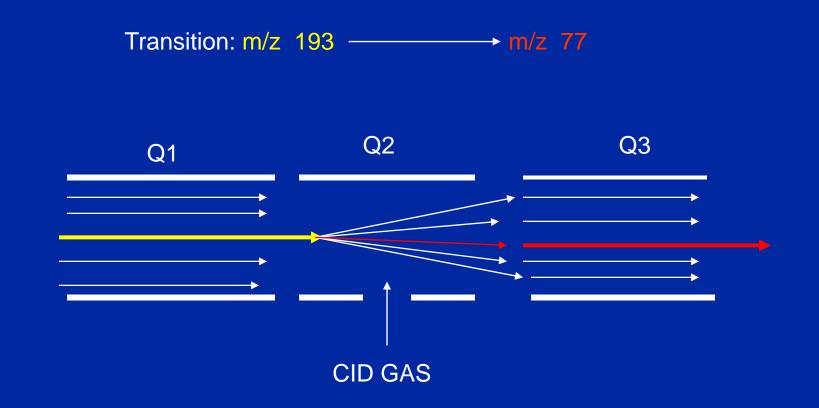
Mobile Phase:

A (0.1% Acetic Acid in water);

B (0.1% Acetic Acid in Acetonitrile)

LC-MS Conditions

- Mass spectrometer: Triple Quadrupole (Micromass Quattro)
- Ionization: ESI-
- Mode: MRM



Injection Volume

– 50uL

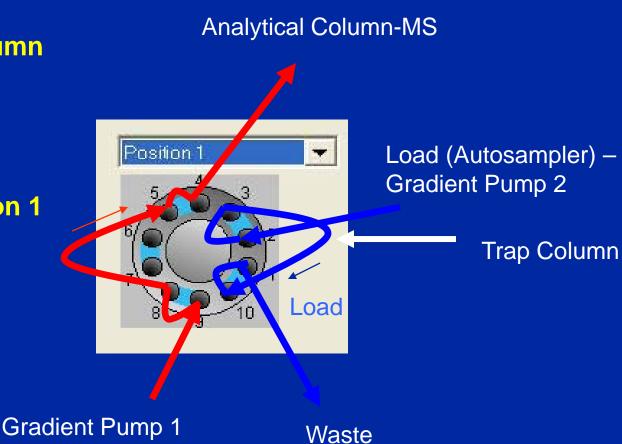
Compound	Transition monitored	Cone /Collision Energy	Retention Time (min)		
MEP	192.7→76.9	22/22	~3.43		
MBP	220.9→76.9	22/18	~4.22		
IS MEP	197.0→78.9	22/19	~3.43		
IS MBP	224.7→78.9	25/20	~4.22		


Selected Reaction Monitoring (MRM)

ON-LINE SPE METHOD

- On-line SPE for pre-concentration and purification
 - Column: Chromolith Flash RP-18e column (4.5x25mm, Merck KGaA, Germany)
 - Mobile Phase:
 - A (0.1% Acetic Acid in water);
 - B (0.1% Acetic Acid in Acetonitrile)

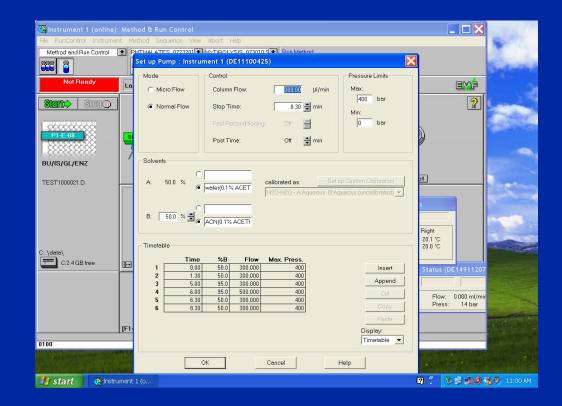
Not Ready				lethod		<u>1</u>	Sequence:		2		
Hutstendy	Last	Run 0.0		HTHAL	ATES_07	23201 🕮	Sequence: HYDROLYSIS	_073010.S		EXP	
		5	ip 2 : Instru		DELANA	207)				2	
		Control	ip 2 : Instru	ment i t	SolventA			Pressure Limits			
P1-E-08	50.	Flow:	-	Umin	100.0 9	1:0	water 0.1% for	Max	A		
	17	PIOW:	<u> </u> m	i/min	100.0 >	2:00	water 0.1% ace	400 ber	1		
		StopTime:	no Limit 🚆	min	SolventE						
I/IS/GL/ENZ		PostTime:	Of S	min	0.0 9	 1:0 	ACN 0.1% formi	Min: 0 ber			
ST1000021.D		Post i ime.	01 3	2 min	1 0.0 1	2: @	ACN 8.1% aceti	10 00	ott		
		Timetable									
			Time	%В	Flow	Max. Pres	8.	Insert	us		
		1	0.00	0.0	1.400		00	Append			
		2	0.40	0.0	1.400		00				
		4	1.00	20.0	1.400		00	Cut	Right 21.1 °C		
		5	1.10	0.0	0.150		00	Copy:	20.0 °C		
data\		6	7.90	0.0	0.150		00	Pasto			
C:2.4 GB free	Ð	7	8.00	0.0	1.400		00		-	Composition of the	
	-	8	8.10	0.0	1,400		00	Display:	ip Status (DE14911207	
								Timetable •			
									% Flow	0.000 ml/mir	
			OK			Cancel	н	lelp	Press		
	1 00000		0.0000000000000000000000000000000000000	19.2°C.				1.000			
	[[F1=]	lelp] [F3=Rd	ecall] [F5=St	artRun]	[F6=Start	SeqRun] [I	B=Stop] [F11-	NextWindow]			
0											



SWITCHING VALVE POSITION 1

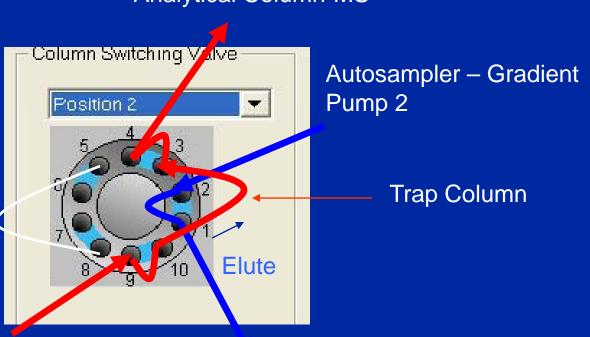
Inject (50 -100uL)

Load on Trap Column while Analytical column is Equilibrating


1 Minute in Position 1

HPLC ANALYTICAL METHOD

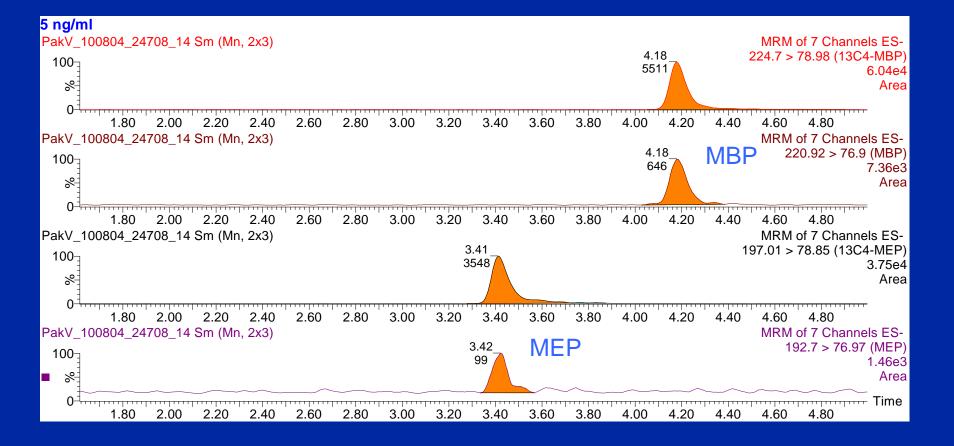
• Column


- Eclipse Plus, Phenyl Hexyl 2.1x150mm, 5um (Agilent)
- Mobile Phase:
 - A (0.1% Acetic Acid in water);
 - B (0.1% Acetic Acid in Acetonitrile)

Switching Valve POSITION 2

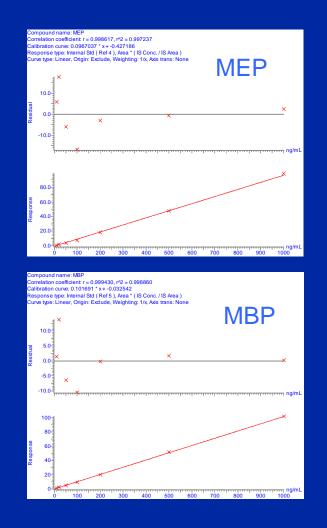
Back Flush from Trap Column onto Analytical Column to Mass spectrometer

7 minutes in Position 2



Analytical Column-MS

Gradient Pump 1


Waste

5ng/mL Calibration Solution

MEP/MBP Calibration Curves

- 5ng/mL 1000ng/mL
- Injection volume: 50uL
- Some Amounts of MEP were Detected in Blank Urine (~30 – 100 ng/mL)
- Some Amounts of MBP wereDetected in Blank Urine (~5 – 40 ng/mL)

Case Study : Summary

- On-line SPE Method Implemented
- 122 Urine Samples Analyzed in 3 Runs
- Wide Range of Concentrations Detected Confirming Human Exposure to Phthalates
 - MEP Concentration range: 5 2600 ng/mL
 - MBP Concentration range: <5 200 ng/mL
- This Method Could be Used for Other Studies which Require Sample Pre-concentration and Purification

Conclusions

- Bioanalysis is an Integral Part of PK/TK/PD **Characterization of New Compounds from Discovery Through Various Stages of Drug Development Leading** to the Market
- LC-MS Triple Quadrupoles are Instruments of Choice for Quantification
- Method Development is Challenging and Exciting Part of the Drug Development Process Since Unique **Compounds are Used and New Targets Investigated**
- The Choice of Instrumentation and its Characteristics is Important, but it is Essential to Understand Chemical **Properties of the Compounds to be Successful!**

Acknowledgments

SUMS Group Allis Chien Karolina Krasinska Pavel Aronov Chris Adams Maurizio Splendore

Vincent & Stella Coates Foundation