

Proteomics and Mass Spectrometry

Chris Adams, PhD

Stanford University Mass Spectrometry

http://mass-spec.stanford.edu/

New Additions to the Stanford "Proteomic" Community

- **Prof. Mike Snyder**
- **Prof. Josh Elias**
- **Instrumental Upgrades**

Data Analysis and Distribution of Results

MS

Raw data extract

Database Search

Results

Sequest Mascot

Scaffold

MS Instrumentation: High Mass Accuracy, Resolution, Sensitivity and Speed

Proteomics 2.0, Precision Proteomics

Improving Mass Accuracy in Proteomics

Better certainty of protein identifications Ability to detect polymorphisms, post-translational modifications

Low Resolution	Medium Resolution	High-Resolution
1 – 0.1 Da accuracy	0.1-0.01 Da accuracy	0.01-0.001 Da accuracy
lon Traps , Quadrupoles, triple quadrupoles	Time-of-Flight,* hybrids with quadrupoles	FT ICR MS, FT-Orbitraps, hybrids with ion traps

18132–18138 PNAS November 25, 2008 vol. 105 no. 47

Accurate Mass Measurement Significantly Aids ID and More

6

18132–18138 PNAS **November 25, 2008** vol. 105 no. 47

Mass Accuracy: What it Means

1. Anecdotal- report of a single measurement

2. Statistical- accuracy estimated from a statistical distribution of mass errors

3. Max. allowed mass deviation (MMD)- mass accuracy cutoff value when database searching

Need for Sensitivity Over 10 Orders of Magnitude

Depth of Proteome Coverage

Figure 2 | **Proteome coverage. a**, Comparison of coverage of MS-based proteomics with GFP- and TAP-tagging methods^{14,15}. Numbers are the identified proteins by each method and, in parentheses, the number of dubious open reading frames (ORFs). **b**, Identified proteins per copy number bin for MS-based proteomics and the two tagging approaches. Copy numbers were estimated by correlation between summed peptide intensity per protein and the quantitative western blotting data¹⁴ (Methods).

Avg. Sequence coverage 30%

NATURE| Vol 455|30 October 2008

Quantification

•Stable isotope labeling by amino acids cell culture (SILAC)

•Isobaric labeling for relative and absolute quantification (iTRAQ)

Stable isotope dimethyl labeling

•Label free

Post Translational Modifications (PTM's)

The "Histome"

MASS SPECTROMETRY

Fig. 2. Map of the 74 histone H4 combinational codes detected in human E5 cells (cell line H1), Bracketed isotoms are positional isomers that coeluted and the corresponding percentages indicate the amount of this whole set (i.e., the global isoform percentage, GP). Shown in the right-hand column (isomer Quant) is the amount of each positional isomer for each of these subsets. For instance, four diacetylated tails were detected and these four forms constituted 10% of the H4 population. By use of ETO-MS/MSwe assigned the percentages of the four forms as 17, 6, 11, and 63. This means that the H4 tail having both the N terminus and K16 acetylated constitutes ~ 6.3% of the entire histone H4 population in control human E5 cells (0 h). Also shown are the percentages of each form at the 15 and 30 h TPA treatment time points. NA indicates either that (i) that formwas present in that particular sample at levels that were too kwo to acquire reliable ETD data or (i), in the case of triacetylated forms, that the combinations of modifications make it mathematically impossible to quantify coeluting komers. All triacetylated kortors were sequenced manually.

D. Phanstiel et al, PNAS, 2008 105, 11, 4093

Modifications the Need for Enrichment

Extent of Modifications in Human Shotgun Proteomics Samples

Fig. 4. Theoretical distribution of unmodified tryptic peptide concentrations in a complex biological sample (solid line) and the resulting distribution of modified peptide concentrations (dashed line) assuming 10 modifications per peptide at a substoichiometric range of 1:2 to 1:100.

MASS SPECTROMETRY

Fig. 5. The average number of modified peptides per single unmodified peptide at a given concentration. The distributions of modified and unmodified peptides are shown in Fig. 4.

M. Nielsen, et al, Mol. Cell. Prot., 2006, 5:2384

Phosphopeptide Analysis

MASS SPECTROMETRY

Phosphopeptide Analysis using ETD and/or HCD

11,955 Phosphopeptides

Evaluating Data for Accuracy

Identification at the peptide level: Probability at the protein level:

📓 Scaffold Viewer	Scaffold Viewer - Samples - 090612_MDzietnik_MochlyRosen_Drp1GST_HumanIPI								
File Edit View Exp	periment Export Quant Window Help								
Min # Peptides: 3 V Min Peptide: 95% Ø									
aud	Display Options: Number of Unique Peptides Req Mods: No Filter Search: Protein Identification Probability		Deci Deci						
Load Data	Percentage of Total Spectra robability Legend:		Drp1 Drp1						
Load Data	Number of Assigned Spectra over 95%	arity and							
	Number of Unique Spectra	Ambi							
(a12)	Percent Coverage 50% to 79%	ight mber	y y						
Samples	Unweighted Spectrum Count 20% to 49%		≥ [¥]						
Samples	(a) b Bio View:	sssion scular ein G	nono L_GS						
25	# Grand Hotelins (2)	Acce Proti	Taxo Drp1						
USA .	1 V 1 IPI:IPI00146935.4 Tax_Id=9606 Gene_Symbol=DNM1L Isoform 1 of Dynamin-1-like protein	IPI00146935 82 kDa	Homo 43 32						
		IPI00329236 /0 KDa 🗶							
Proteins									
	Protein Information:	Sample Information:							
	Lookup Accession Number In: NCBI (ie:gi 13519 🗸	Piological Camples							
Fred Re ft		Environmente Catagorium							
Similarity		Sample Category:							
		Sample Description:							
	Preferred Accession Number:	MS/MS Sample:							
	Protein Name:	MS/MS Sample Notes:							
Quantify									

28 C									
E Edit View Exp	r - Proteins - 090612_MDzietnik_Mochlykosen_Drp1GS1_HumaniPi								
	IPI:IPI00329236.3 Tax_Id=9606 Gene_Sym 🗸 All MS/MS Samples	dificatio							
	Sequence Coverage Protein Category Bio Sample MS/MS Sa Prob								
Load Data	IPI:IPI0032 Drp1_PKC Drp1_GST_P 090611_MD 100								
	IPI:IPI0032 Drp1 Drp1_GST 090611_MD 929								
Per la									
× 1	Protein Sequence Similar Proteins Spectrum Spectrum/Model Error Fragmentation Table								
Samples	IP100329236 (92%), 77,507.4 Da								
	1 unique peptides, 1 unique spectra, 1 total spectra, 19/676 amino acids (3% coverage)								
CALL.									
Proteins	MAPFLRIAFN SYELGSLQAE DEANQPFCAV KMKEALSTER GKTLVQKKPT								
	KAEFWLDLQP QAKVLMSVQY FLEDVDCKQS MRSEDEAKFP TMNRRGAIKQ								
	AKIHYIKNHE FIATFFGQPT FCSVCKDFVW GLNKQGYKCR QCNAAIHKKC								
	IDKIIGRCIG TAANSRDIIF QKERFNIDMP HRFKVHNYMS PIFCDHCGSL IWGIVKOGIK CEDCGMNVHH KCREKVANIC GINOKIIAEA INOVTORASR								
Similarity	RSDSASSEPV GIYQGFEKKT GVAGEDMQDN SGTYGKIWEG SSKCNINNFI								
	FHKVLGKGSF GKVLLGELKG RGEYFAIKAL KKDVVLIDDD VECTMVEKRV								
	TFYAAEIMCG LQFLHSKGII YRDLKLDNVL LDRDGHIKIA DFGMCKENIF								
	GESRASTFCG TPDYIAPEIL QGLKYTFSVD WWSFGVLLYE MLIGQSPFHG								
Quantify	DUEDELFEST RVDTPHYPRW ITKESKDILE KLFEREPTKR LGVTGNIKIH PEEKTINWTI LEKRRIEPPE RPKVKSPRDY SNEDQEELNE KARLSYSDKN								
	LIDSMDQSAF AGFSFVNPKF EHLLED								
Bublish									
Publish									

•

ightarrow

 \bullet

۲

ightarrow

 \bullet

MASS SPECTROMETRY

ightarrow

igodol

Filtering Data: FDR/FPR

FDR: False Discovery Rate

For a number *m* of MS/MS spectra (probability within dataset)

FPR: False Positive Rate A single spectrum

A. Nesvizhskii et al. **NATURE METHODS** | VOL.4 NO.10 | OCTOBER 2007 | **795**

Sample Prep: Selective to Desired Outcome

Full characterization of a single moleculeincluding PTMs?

Global proteome study?

Specific for phosphorylation, acetylation, methylation, ubiquitination....?

GeLCMS Works Better Than Ever..

	Gel Region	1*	2	3	4*	5*	6	7	8	9*	Total	Change
Overnight												
	Peptides	135	210	271	108	96	243	163	130	51	1407	
	Proteins	23	28	36	18	13	45	36	28	6	233	
Pmax_1hr												
	Peptides	210	198	253	253	204	266	149	147	98	1778	>371
	Proteins	31	28	36	29	24	45	37	31	12	273	>40

GeLCMS Works Better Than Ever. But

Coomassie

Detection Limits

Brilliant Blue 50 ng Colloidal 10-20 ng

Silver

Mass Spec Compatible^{*} 1-5 ng

*No fixing/staining steps involving formaldehyde/glutaraldehyde

MASS SPECTROMETRY

The Compromise

Sypro Ruby

Detection Limit

5-10 ng

MASS SPECTROMETRY

Size Matters ? Why

•detection limit of protein staining is on a weight basis

•detection limit of protein with the mass spectrometer is on a molar basis

•higher the molecular weight, at the same mass, the higher the detection limit will be for the mass spectrometer

•1.0ng of a 15kd protein is 67 fmol, while 1.0ng of a 250kd protein is only 4 fmol.

•Both proteins will have similar stain intensities, but there is 15 times less protein on a molar basis from the 250kd protein.

•Protein stains detect total protein, mass spectrometer detects proteins individually.

MASS SPECTROMETRY

In Solution Digests

Most all surfactants and detergents are detrimental

Triton X-100

SDS

Enrichments

Figure 4 | Overlap between phosphopeptide isolation methods on the level of identified phosphorylation sites. $dhbTiO_2$ is not shown, as 95% of the phosphopeptides identified from the $dhbTiO_2$ samples were also identified in the $pTiO_2$ samples.

B. Bodenmiller et. al, 234 | VOL.4 NO.3 | MARCH 2007 | NATURE METHODS

PAC- phosphoramidate chemistry

IMAC- immobilized metal affinity chromatography

pTiO₂- pthalic titanium dioxide

Solution: FASP Solubilizing the Proteome

5

Solution: FASP Solubilizing the Proteome Results

FASP

urea/thiourea

Sample preparation method

NATURE METHODS | VOL.6 NO.5 | MAY 2009 | 359

Acknowledgements

SUMS •Allis Chien •Karolina Krasinska •Pavel Aronov •Theresa McLaughlin

Vincent and Stella Coates Foundation