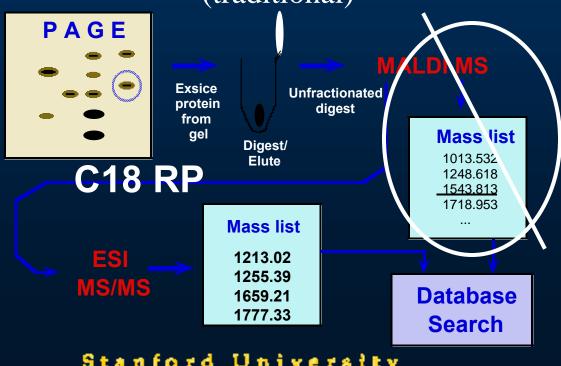
For personal use only. Please do not reuse or reproduce without the author's permission

Proteomics Workshop


Stanford MS users' meeting Chris Adams, Ph.D. Thursday, August 21, 2008

The Proteomics Workflow

Bottom-up (traditional)

High sensitivity, throughput, but: No intact MW information

Modifications, sequence errors are easily missed

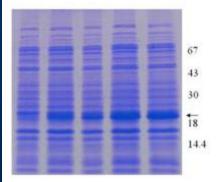
2

False positives

Proteomic Applications and Mass Spectrometry

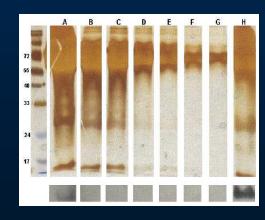
3

Protein ID-1D, 2D gels


Complex Mixtures-Cell lysates, IP's

PTM's- In Vivo/ In Vitro Increased Sequence Coverage Custom Labels, Phosphorylation, Acetylation, Ubiquitination ect.

Stains

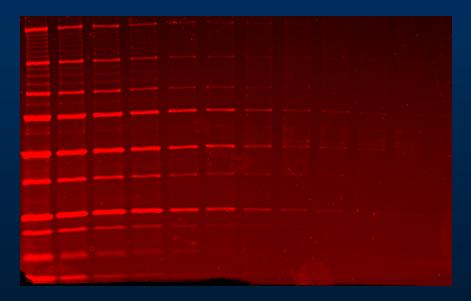

Coomassie

Detection Limits

Brilliant Blue 50 ng Colloidal 10-20 ng

Silver

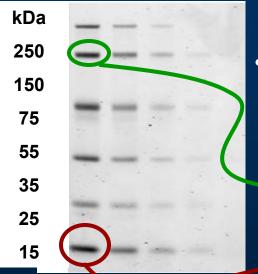
Mass Spec Compatible^{*} 1-5 ng


*No fixing/staining steps involving formaldehyde/glutaraldehyde

The Compromise

Sypro Ruby

Detection Limit


5-10 ng

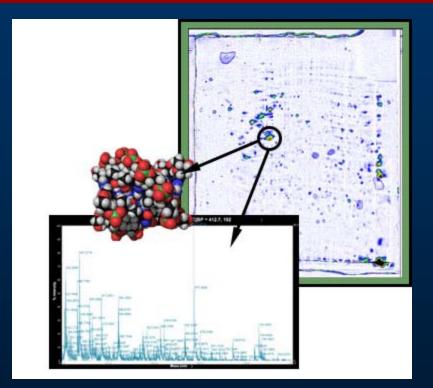
Size Matters? Why

•detection limit of protein staining is on a weight basis

•detection limit of protein with the mass spectrometer is on a molar basis

•higher the molecular weight, at the same mass, the higher the detection limit will be for the mass spectrometer

•1.0ng of a 15kd protein is 67 fmol, while 1.0ng of a 250kd protein is only 4 fmol.


•Both proteins will have similar stain intensities, but there is 15 times less protein on a molar basis from the 250kd protein.

•Protein stains detect total protein, mass spectrometer detects proteins individually.

2D Gel Spots

Are OK at low mass and preferentially Coomassie stained

7

Band Excision, Sample Handling Yours/Mine/Mouse/Lab Partners Hair and Skin

8

Ideas to Keep Gels Clean

Gloves

Clean scapel

Clean "cutting surface"

Hood

Eppendorfs not exposed to atmospheric particles

Pippet tips not exposed to atmospheric particles

In Solution Digestion - Consistency Counts -20 Acetone precipitation followed by Reduction (DTT) alkylation (IAA) and tryptic digest

Should not/cannot contain detergents (tween) or surfactants (SDS)

Will include a "stage tip" cleanup prior to LC MSMS 10

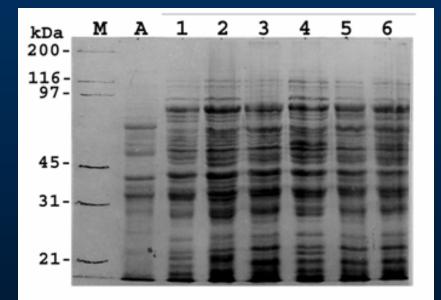
Complex Samples/Mixtures

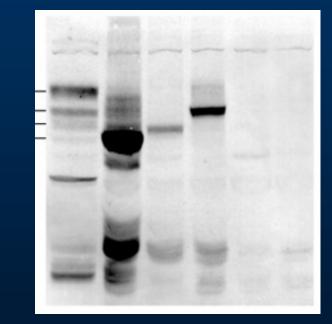
Lysates & maybe IP's

In-Solution Digest then decide how do we reduce complexity?

Mudpit (offline)

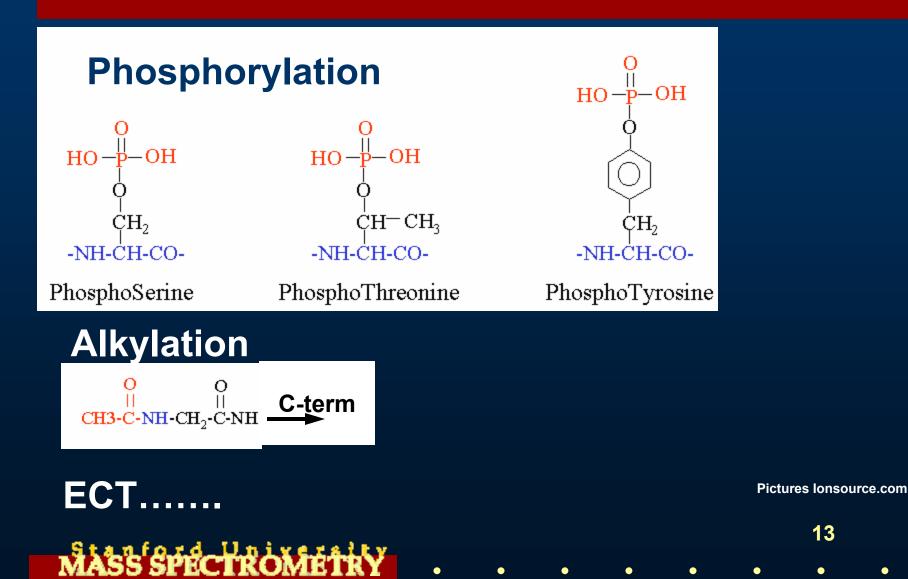
Fractionate by Hydrophobicity


Increase LC MSMS Gradient


 \bullet

11

How Complex??



VS

Modifications - know yours

Modifications are Ubiquitous

TABLE |

List of detected base (unmodified) peptides of the abundant protein actin in a human proteome sample (A431 cell line)

Mowse scores (M-score) of unique base peptides and numbers of unique dependent peptides detected for each base peptide by ModifiComb are given. The data are pooled from three independent LC/MS/MS runs.

Base peptide	Position	M-score	Dependent peptides
AGFAGDDAPR	18-27	83	3
AVEPSIVGRPR	28-38	75	4
HQGVMVGMGQK	39-49	111	18
DSYVGDEAQSK	50-60	103	13
DSYVGDEAQSKR	50-61	63	8
GILTLK	62-67	35	1
YPIEHGIVTNWDDMEK	68-83	91	10
IWHHTFYNELR .	84-94	81	18
VAPEEHPVLLTEAPLNPK	95-112	95	18
TTGIVMDSGDGVTHTVPIYEGYALPHAILR	147-176	135	18
LDLAGR	177-182	35	3
DLTDYLMK	183-190	67	10
GYSFTTTAER	198-205	61	8
DIKEK	210-214	35	1
EKLCYVALDFEQEMATAASSSSLEK	213-237	29	1
LCYVALDFEQEMATAASSSSLEK	215-237	98	2
SYELPDGQVITIGNER	238-253	86	10
CPEALFQPSFLGMESCGIHETTFNSIMK	258-283	39	1
CDVDIRK	284-290	42	5
KDLYANTVLSGGTTMYPGIADR	290-311	149	14
DLYANTVLSGGTTMYPGIADR	291-311	54	17
EITALAPSTMK	315-326	93	9
IKIIAPPER	326-335	35	2
IIAPPER	328-334	31	1
IIAPPERK	328-335	30	1
QEYDESGPSIVHR	359-371	116	10

21mer

MASS SPECTROMETRY

M. Nielsen, et al, Mol. Cell. Prot., 2006, 5:2384

14

Modifications the Need for Enrichment

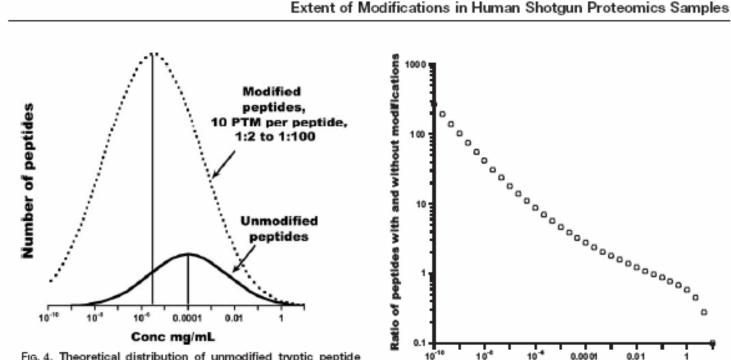


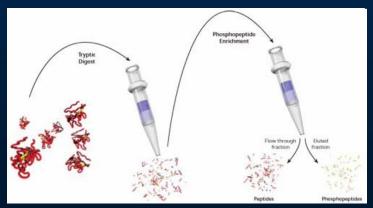
Fig. 4. Theoretical distribution of unmodified tryptic peptide concentrations in a complex biological sample (solid line) and the resulting distribution of modified peptide concentrations (dashed line) assuming 10 modifications per peptide at a substoichiometric range of 1:2 to 1:100.

Fig. 5. The average number of modified peptides per single unmodified peptide at a given concentration. The distributions of modified and unmodified peptides are shown in Fig. 4.

Conc, mg/mL

M. Nielsen, et al, Mol. Cell. Prot., 2006, 5:2384

15



Enrichments Help

Bottom Up (Peptide) or Top Down (Protein)

In-house Galium phosphopetide enrichment and TiO2 Enrichment Capabilities

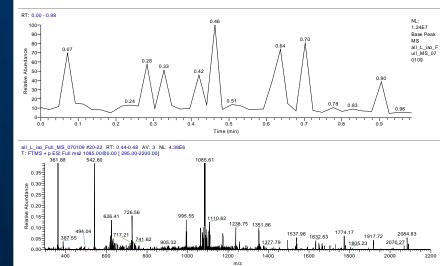
*Affinity purification works but be cautious about your antibody

Want over abundance of starting material

Increased Sequence Coverage - Multiple Enzymes

Knowing your protein before hand and potential sites of interest

Trypsin LysC ArgC Chymotrypsin GluC AspN


Ideal peptide 8-12mer, w/ modif. site centrally located

MS/MS and Data Validation

Data validation takes time, patience and N ≥ 2

Mass accuracy matters

18

I & L isomeric K (128.09496) v. Q (128.05858) Deamidation N → D + 0.98 Da N v. D Δ 1 Da Q v. E Δ 1 Da

Database Searching

Mascot

Sequest

Jimmy K. Eng, Ashley L. McCormack, and John R. Yates, III (1994). "An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database".

J.Am Soc Mass Spectrom 5: 976–989

Knowing taxonomy reduces search time dramatically

Push for Higher Mass Accuracy

With 1 ppm accuracy, elemental composition of a peptide up to 600-700 Da (6-7 residues) can be derived (Zubarev, RA Marshall, A)

Distinguishing K/Q (36.4 mDa) :

With 1 ppm accuracy, K/Q can be distinguished in peptides up to 3800 Da.

Identification of post-translational modifications :

Tryptic peptide, m = 997.514 + 0.001 Da (1 ppm accuracy)

Did not match any peptide sequences predicted for methionine-tRNA ligase Assumption: it is a N-terminal peptide with Met removed and Ser acetylated. Testing: calculated mass m=997.5126 Da, agrees with the measured value

(Gibson, B.W.; Biemann, K. Proc. Natl. Acad. Sci. U.S.A. 81 (1984) 1956)

Data base search :

Tryptic peptide, m = 1513.794 +/- 0.001 (1 ppm accuracy)

Unique sequence, GAAFICAIHSPTLR, is found in the yeast genome.
Four sequences are found in a non-redundant database of 203 000 entries; including TFHRIQQMLPDK with the same elemental composition.
With 1 ppm accuracy, tryptic peptides may be unique for a small genome

(Jensen, O.N.; Podtelejnikov, A.; Mann, M. Rapid Commun. Mass Spectrom. 10 (1996) 1371)

Acknowledgments

21

- SUMS Group
 - Allis Chien
 - Karolina Krasinska
 - Theresa McLaughlin
 - Pavel Aronov