artMS
 Analytical R Tools for Mass Spectrometry

http://artms.org
Bioconductor

David Jimenez-Morales, PhD
敬 Stanford
Cardiovascular Medicine
Ashley Lab
for Mass Spectrometry
http://artms.org Bioconductor

Goals

Facilitate the analysis of Mass-Spectrometry based Proteomics data using the \mathbb{R} programming language

2
Provide different levels of analysis to ensure data quality, quantification, and frame results in a biological context.

Quantification Methods
Label Free (+/- Fractionation) SILAC

Analysis of

+Global Proteome
 +PostTranslational Modifications

Phosphorylation
Ubiquitination
Acetylation \longleftarrow (coming soon)

Experimental

Computational

Peptide Identification

- Tool widely used
- Algorithms yield high mass accuracy and precision
- It covers a wide variety of proteomics experiments
- Simplified user interface
- It can now run on Linux (improved performance)

Experimental

Computational

artMS

Analytical R Tools for Mass Spectrometry
http://artms.org

Quality control

Relative
 quantification

evidence + keys + contrast

Functional analysis
Data integration Imputation Enrichment analysis
Pathway analysis
Network generation

Miscellaneous

How does it work?

artMS

Analytical R Tools
for Mass Spectrometry
http://artms.org Bioconductor
artMS
Analytical R Tools for Mass Spectrometry
http://artms.org

Quality control

Relative quantification

Miscellaneous

artmsQualityControlEvidenceBasic()
artmsQualityControlEvidenceExtended()
artmsQualityControISummaryExtended()

artmsQuantification()

artmsAnalysisQuantifications()
artmsEvidenceToSAINTq()
artmsEvidenceToSaintExpress()
artmsPhosfateOutput()
artmsPhotonOutput()
etc

Basic Functions

artMS
Analytical R Tools for Mass Spectrometry http://artms.org $\sqrt{\text { Bioconductor }}$

Quality control

Functional analysis

Input Files
Configuration

Experimental design

	A	B	C	D	E
1	RawFile	IsotopeLabelType	Condition	BioReplicate	Run
2	qx006145	L	Cal33	Cal33-1	1
3	qx006146	L	Cal33	Cal33-2	2
4	qx006147	L	Cal33	Cal33-3	3
5	qx006148	L	Cal33	Cal33-4	4
6	qx006154	L	HSC6	HSC6-1	5
7	qx006151	L	HSC6	HSC6-2	6
8	qx006152	L	HSC6	HSC6-3	7
9	qx006153	L	HSC6	HSC6-4	8
10					

- Two cell cancer cell lines: Cal33, HSC6
- 4 biological replicates each

- Two cell cancer cell lines: Cal33, HSC6
- 4 biological replicates each
artMS
Analytical R Tools
for Mass Spectrometry http://artms.org Bioconductor

Quality control

Functional analysis

Miscellaneous

Input Files
M_{0} evidence.txt + keys.txt + contrast.txt
Configuration

- Two cell cancer cell lines: A, B, C, D, E, F, G
- 4 biological replicates each

artMS

Analytical R Tools for Mass Spectrometry

http://artms.org

Quality control

Functional analysis

Miscellaneous
data:
enabled: 1
fractions:
enabled: 0
silac:
enabled: 0
filters:
enabled: 1
contaminants: 1
erotein groups: remove
modifications: PH
sample_plots: 1
msstats:
enabled: 1
msstats inpu :
profilePlots: none
normalization method: equalizeMedians
normalization reference:
summaryMethod: TMP
censoredInt: NA
cutoffcensored: minFeature
MBimpute: 1
feature_subset: all
butput extras:
enabled: 1
annotate:
enabled: 1
specie: HUMAN
plots:
volcano: 1
heatmap: 1
LFC: -1.51 .5
FDR: 0.05
reatman display: log2FC
basic: 1

```
extended: 1
```

```
extended: 1
```

Configuration

artMS

Analytical R Tools for Mass Spectrometry

http://artms.org

Quality control

Functional analysis

Miscellaneous

enabled: 1
fractions:
enabled: 0
silac:
enabled: 0
filters:
enabled: 1
orotein groups: remove
modifications: PH
sample_plots: 1
msstats:
enabled: 1
msstats_input:
profilePlots: none
normalization_method: equalizeMedians
normalization_reference:
summaryMethod: TMP
censoredInt: NA
cutoffCensored: minFeature
MBimpute: 1
feature_subset: all
จutput extras:
enabled: 1
annotate:
enabled: 1
specie: HUMAN
plots:
volcano:
heatmap:
LFC: -1.5 1.5
FDR: 0.05
heatinap_ctuster_cols:

Configuration
artMS

Analytical R Tools for Mass Spectrometry

http://artms.org

Quality control

Functional analysis

Miscellaneous
config.yaml
les :
evidence : '~/ph_ms/evidence.txt'
keys : '~/ph_ms/keys.txt
contrasts : '~/ph_ms/contrast.txt'
output : '~/ph_ms/phglobal/phglobal-results.txt'
basic: 1

```
data:}\begin{array}{l}{\mathrm{ enabled: 1 Proteomics}}\\{\mathrm{ fractions: }}
                                    details
enabled:
silac:
silac:
enabled: 0
filters:
enabled: 1
contaminants: 1
protein_groups: remove
modifications: PH
amole olots: 1
```


msstats: enabled: 1

msstats_input:
profilePlots: none
normalization method: equalizeMedians
normalization reference:
summaryMethod: TMP
censoredInt: NA
cutoffCensored: minFeature
MBimpute: 1
feature_subset: all
จutput extras:
enabled: 1
annotate:
enabled: 1 specie: HUMAN
plots:
volcano: 1
heatmap: 1
LFC: -1.51 .5
FDR: 0.05
heatmap_cluster_cols: 0

Configuration
artMS

Analytical R Tools for Mass Spectrometry

http://artms.org

Quality control

Functional analysis

Miscellaneous
config.yaml
les :
evidence : ' $\sim /$ ph_ms/evidence.txt'
keys : '~/ph_ms/keys.txt
contrasts : '~/ph_ms/contrast.txt
output : '~/ph_ms/phglobal/phglobal-results.txt'
qc:
basic: 1
extended: 1
data:
enabled: 1
fractions:
enabled: 0
silac:
enabled: 0
filters:
enabled: 1
contaminants: 1
protein_groups: remove
modifications: PH

msstats: enabled: 1 msstats_input: \quad Relative Quantification
 msstats_input:

profilePlots: none
ormalization_method: equalizeMedians
normatization_metnou: equal
sumnaryMethod: TMP
censoredInt: NA
cutofficensored: minFeature
MBimpute: 1
feature_subset: all
output_extras:
enabled: 1
annotate:
enabled: 1
specie: HUMAN
plots:
volcano: 1
heatmap: 1
LFC: -1.51 .5
FDR: 0.05
heatmap_cluster_cols: 0
heatmap_display: log2FC

Configuration

artMS

Analytical R Tools for Mass Spectrometry

http://artms.org

Quality control

Functional analysis

Miscellaneous
config yaml
les :
evidence : '~/ph_ms/evidence.txt'
keys : '~/ph_ms/keys.txt
contrasts : '~/ph_ms/contrast.txt
qc :
basic: 1
extended: 1
data:
enabled: 1
fractions:
enabled: 0
sitac:
enabled: 0
filters:
enabled: 1
contaminants: 1
protein_groups: remove
modifications: PH
sample plots: 1
msstats:
enabled: 1
msstats_input:
profilePlots: none
normalization method: equalizeMedians
normalization reference:
summaryMethod: TMP
censoredInt: NA
cutoffCensored: minFeature
MBimpute: 1

```
output_extras:
enabled: 1
annotate:
```

enabled: 1
specie: HUMAN
plots:
volcano: 1
heatmap: 1
LFC: -1.51 .5
FDR: 0.05
heatmap_cluster_cols: 0

Configuration
artMS
Analytical R Tools for Mass Spectrometry
http://artms.org
Bioconductor
M_{0} evidence.txt
keys.txt

Quality control artmsQualityControlEvidenceExtended()
artmsQualityControlSummaryExtended()

Analytical R Tools for Mass Spectrometry

$~ / \sim$
> library(artMS)
> artmsQualityControlEvidenceBasic(evidence_file = "evidence.txt", keys_file = "keys.txt")

QUALITY CONTROL ------------------
>> LOADING FILES
> MERGING FILES
It might take a long time
(depending on the size of the evidence file)
>> GENERATING THE INTENSITY DISTRIBUTION PLOTS
> CONTAMINANTS CON_IREV__ REMOVED
>> GENERATING THE REPRODUCIBILITY PLOTS
(Warning: it might take some time)
|===1100\%
\gg GENERATING CORRELATION MATRICES
--- NO Technical Replicates detected
--- By Biological replicates
--- By Conditions
>> GENERATING INTENSITY STATS PLOTS
--- AB PROCESSED
>> BASIC QUALITY CONTROL ANALYSIS COMPLETED!

Input Files

keys.txt

artmsQualityControlEvidenceBasic()
Quality control

Analytical R Tools for Mass Spectrometry
http://artms.org
Bioconductor

artMS

- Reproducibly
- MS Intensity
- Spectral Counts
- Contaminants
- PTMs

Analytical R Tools for Mass Spectrometry

~/ $\#$
> artmsQualityControlEvidenceExtended(evidence_file = "evidence.txt",
$+$
>>EXTENDED QUALITY CONTROL ANALYSIS (evidence.txt based)-
>> MERGING FILES
It might take a long time
(depending on the size of the evidence file)
>> GENERATING QC PLOTS
--- Plot PSM done
--- Plot IONS done
--- Plot TYPE done
--- Plot PEPTIDES done
--- Plot PROTEINS done
--- Plot Plot Ion Oversampling done
--- Plot Charge State done
--- Plot Mass Error done
--- Plot Mass-over-Charge distribution done
--- Plot Peptide Intensity CV done
--- Plot Peptide Detection (using modified.sequence) done
--- Plot Protein Intensity CV done
--- Plot Protein Detection done
--- Plot ID overlap done
--- Plot Inter-Correlation done
--- Plot Sample Preparation done

artMS

Analytical R Tools for Mass Spectrometry

Quality control
artmsQualityControlEvidenceExtended()

- Charge State Distribution
- ID overlap
- Peptide Ion Statistics
- Precursor Mass Error
- Precursor m/z error
- Frequency Peptide Detection
- Peptide Intensity CV
- Peptide Statistics
- Peptide Ion oversampling
- Protein detection frequency
- Protein Statistics / CV
- Peptide-spectrum matches
- MaxQuant Type statistics

artMS
Analytical R Tools for Mass Spectrometry
http://artms.org
Bioconductor

Quality control
artmsQualityControlEvidenceBasic()
artmsQualityControlEvidenceExtended()
artmsQualityControISummaryExtended()
artmsQuantification()

Miscellaneous
mo evidence.txt
keys.txt
artmsEvidenceToSAINTq()
artmsEvidenceToSaintExpress()
artmsAnalysisQuantifications()
artmsPhosfateOutput()
artmsPhotonOutput()
etc

artmsQuantification()

Bio
Bioconductor
http://msstats.org/

MSstats is an open-source R package for statistical relative quantification of proteins and peptides in global, targeted, and data-independent proteomics.

It uses a family of linear mixed models that attempts to:

- minimize bias and inefficiencies in spectrometry-based proteomics,
- distinguish the systematic variation from random artifacts,
- maximize the reproducibility of the results

Developed by Meena Choi and Olga Vitek
Used in fllt Skyline

Analytical R Tools for Mass Spectrometry	keys.txt
http:///artms.org	contrast.txt

Relative
quantification

Mo. evidence.txt
keys.txt
contrast.txt
config.yaml

- quantification-results.txt
- quantification-results-annotated.txt
- Normalized abundance
* results_ModelQC.txt
* results_RunlevelData.txt
* results-mss-groupQuant.txt
* results-mss-normalized.txt
* results-mss-sampleQuant.txt
- results_sampleSize.txt
- results_experimentPower.txt

PDF FILES

- results-heatmap.pdf
- results-peptidecounts-perBait.pdf
- results-peptidecounts.pdf
- results-sign.pdf
- results-volcano.pdf

Input Files
artMS

Analytical R Tools for Mass Spectrometry
 http://artms.org
 keys.txt
 contrast.txt
 config.yaml
 Mo evidence.txt

Annotations
Summary files in different format (xls, txt) and shapes
Numerous summary plots
Enrichment analysis using Gprofiler
PCA of protein abundance
PCA of quantifications
Clustering analysis
Functional analysis artmsAnalysisQuantifications()

-results-summary.xlsx
-results-abundance-long.txt -results-abundance-wide.txt results-enrich-MAC-allsignificants-corum.txt -results-enrich-MAC-allsignificants.txt -results-enrich-MAC-negatives-corum.txt -results-enrich-MAC-negatives.tx -results-enrich-MAC-positives-corum.txt -results-enrich-MAC-positives.txt -results-log2fc-long.txt -results-log2fc-wide.txt -results.log2fc-clusterheatmap-enriched.txt -results.log2fc-clusterheatmap.txt
-results-enrich-MAC-allsignificants-corum.pdt results-enrich-MAC-negatives-corum.pdf -results-enrich-MAC-positives-corum.pdf -results-pca-correlations.pdf -results-pca-pca01.pdf -results-pca-pca02.pdf -results-pca-pca03.pdf
-results.clustering.abundance.all-overview.pdf -results.clustering.abundance.all-zoom.pd \ddagger -results.clustering.log2fc.all-overview.pdf -results.clustering.log2fc. all-zoom.pdf -results.clustering.log2fcSign.all-overview.pdf -results.clustering.log2fcSign.all-zoom.pdf -results.distributions.pdf
-results.distributionsFil.pdf
-results.imputation.pdf -results.log2fc-clusterheatmap.pdf -results.log2fc-clusters.pdf -results.log2fc-corr.pdf results.log2fc-dendro.pdf -results.log2fc-individuals-pca.pdf -results.TotalQuantifications.pdf -results.correlationConditions.pdf -results.correlationQuantifications.pdf -results.relativeABUNDANCE.pdf -results.reproducibilityAbundance.pdf

Summary files in different format (x|s, txt) and shapes Numerous summary plots
Enrichment analysis using Gprofiler
PCA of protein abundance
PCA of quantifications
Clustering analysis
Functional analysis artmsAnalysisQuantifications()

artMS

Analytical R Tools for Mass Spectrometry
http://artms.org Bioconductor

available at:

Bioconductor
https://bioconductor.org/packages/release/bioc/html/artMS.html
(GitHub https://github.com/biodavidjm/artMS

気 Documentation: http://artms.org

UCSF

University California San Francisco

Nevan Krogan Danielle Swaney Jeff Johnson Ruth Huttenhain John Von Dollen

Cyto
GLADSTONE INSTITUTES

Alex Pico

Sara Jimenez-Lopez

