Proteomic MS analysis of FASP-processed FFPE leptomeningeal amyloid brain tissue identifies transthyretin where immunohistochemical staining fails

Anna N. Okumu, Michael Greicius, Edward Plowey, Yuxi Wu, Allis S. Chien, Christopher M. Adams

aVincent Coates Foundation Mass Spectrometry Laboratory. bDept of Neurology; cDept of Pathology; School of Medicine. Stanford University, Stanford, CA

Overview

Immunohistochemical staining (IHC) is a routine procedure performed by pathologists for disease diagnosis. Inconclusive results can occur however, due to increased background from non-specific reactivity or epitope loss in the physical structure of the protein. Using Filter Aided Sample Preparation (FASP) of Formalin Fixed Paraffin Embedded (FFPE) tissue, we were able to identify proteins constitutive of amyloid plaques, specifically transthyretin, which was overlooked by IHC staining. In addition, we semi-quantified a point mutation (Tyr69His) in transthyretin.

Methods

Tissue processing. Core samples of patient brain tissue measured 3 mm in diameter. The total weight of each core ranged from 0.8 mg to 1.7 mg. The samples were first deparaffinized in xylene and absolute ethanol. The samples were then placed in a solution of 4% SDS and 100 mM Tris pH 8.5 and processed using a Precellys 24-Dual tissue homogenizer. In order to maximize tissue solubilization, samples were incubated in a heating block at 99°C for 60 minutes.

FASP. Following protein solubilization, disulfide bonds were reduced via the addition of DTT to 50 mM, and heating at 55°C for 20 min. An approximate 200 µL of each sample was then transferred to the FASP filter and washed three times by centrifugation with 8 M Urea in 0.1 M Tris pH 8.5, to remove the SDS. Proteins were alkylated by adding iodoacetamide solution to the FASP filter and incubating in the dark for 20 min, followed by centrifugation. This was followed with another three washes of 8 M Urea, 0.1 M Tris pH 8.5, then three washes of 50 mM ammonium bicarbonate. Trypsin was added to the filter for overnight digestion of the proteins on the filter. The peptides were eluted by centrifugation with 50 mM ammonium bicarbonate and 0.5 M sodium chloride. The samples were then acidified with 50% phosphoric acid, and peptides were extracted and concentrated by C18 stage tip.

Mass Spectrometry. The resulting peptides were loaded onto a Waters nanoAcquity UPLC; the analytical column was pulled and packed in-house using 3µm C18 material. An LTQ Orbitrap Velos MS in DDA mode fragmented the 15 most intense multiply charged precursor ions via CID. Data were searched against the Uniprot Human database using Sequest, and results were filtered to 1% FDR at both peptide and protein levels.

Results

Implementing FASP to identify proteins from FFPE tissue that normally are analyzed with IHC staining gave conclusive results. Specifically, in samples “A” (amyloid regions, N=3), 490 proteins and 2763 peptides were identified, while in the control tissues “C” (N=3), 1045 proteins and 6063 peptides were identified. The proteome overlap of the two sample types was only 25% (311 proteins in common), indicating very different proteomes of the two brain regions. A particular protein of interest, transthyretin, was only found in sample set “A”, and it was identified as the most abundant protein after hemoglobin (165-357 spectral counts). The sequence coverage of transthyretin was 80% (Figure 2). Other key proteins found in sample set “A” include serum amyloid P-component (SAP) and serum amyloid A (SAA). SAP prevents fibril formation by enzymes so is considered key in maintaining the stability of amyloid deposits.

Following transthyretin identification, gene sequencing of the patient’s DNA was performed, revealing a point mutation within transthyretin at Tyr69His. We carried out a semi-quantitative analysis using extracted ion chromatograms (EIC) and measuring area under the curve (AUC) to suggest that approximately 85% - 90% of this patient’s transthyretin, as sampled within the amyloid plaques, was the mutated form at Tyr69His. From this we conclude that transthyretin is implicated in the amyloid formation as was visually identified and suspected by the pathologists. In this case where IHC failed, proteomics is a superior analytical approach.

Conclusions

Applying FASP to FFPE post mortem brain tissue, it became clear that transthyretin is implicated in the amyloid formation as was visually identified and suspected by the pathologists. In this case where IHC failed, proteomics is a superior analytical approach.

Additionally, as a result of the gene sequencing, the Tyr69His point mutation within transthyretin was identified; MS analysis suggested that over 80% of transthyretin content within the plaques of this patient are of the mutated form. Structural studies are currently being performed to evaluate the propensity of the point mutation for aggregate formation.

Our findings also suggest that the proteome content of the regions of the brain containing the amyloid is uniquely different to that of the cerebral white matter (control). These proteome content and the quantities therein could lead to potential biomarkers. As a follow up analysis we are currently embarking on a complete PTM scan (phospho, methyl, acetyl, ubq) for the amyloid plaque samples.

Moving forward, the proteomic approach was applied recently where it was uncertain whether amyloid plaques were present in the ventricular cavity of the brain in the same patient; the resulting data showed substantial overlap with that of the control, and did not find transthyretin. This finding was consistent with the clinicians’ hypothesis.

References


Acknowledgements

The Vincent and Stella Coates Foundation, NIH NCTR Award Number 510R027427. This poster may be downloaded from http://mass-spec.stanford.edu/Publications.html